Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Balmes is active.

Publication


Featured researches published by John R. Balmes.


The New England Journal of Medicine | 1996

EFFECTS OF A COMBINATION OF BETA CAROTENE AND VITAMIN A ON LUNG CANCER AND CARDIOVASCULAR DISEASE

Gilbert S. Omenn; Gary E. Goodman; Mark Thornquist; John R. Balmes; Mark R. Cullen; Andrew G. Glass; James P. Keogh; Frank L. Meyskens; Barbara Valanis; James H. Williams; Scott Barnhart; Samuel P. Hammar

BACKGROUND Lung cancer and cardiovascular disease are major causes of death in the United States. It has been proposed that carotenoids and retinoids are agents that may prevent these disorders. METHODS We conducted a multicenter, randomized, double-blind, placebo-controlled primary prevention trial -- the Beta Carotene and Retinol Efficacy Trial -- involving a total of 18,314 smokers, former smokers, and workers exposed to asbestos. The effects of a combination of 30 mg of beta carotene per day and 25,000 IU of retinol (vitamin A) in the form of retinyl palmitate per day on the primary end point, the incidence of lung cancer, were compared with those of placebo. RESULTS A total of 388 new cases of lung cancer were diagnosed during the 73,135 person-years of follow-up (mean length of follow-up, 4.0 years). The active-treatment group had a relative risk of lung cancer of 1.28 (95 percent confidence interval, 1.04 to 1.57; P=0.02), as compared with the placebo group. There were no statistically significant differences in the risks of other types of cancer. In the active-treatment group, the relative risk of death from any cause was 1.17 (95 percent confidence interval, 1.03 to 1.33); of death from lung cancer, 1.46 (95 percent confidence interval, 1.07 to 2.00); and of death from cardiovascular disease, 1.26 (95 percent confidence interval, 0.99 to 1.61). On the basis of these findings, the randomized trial was stopped 21 months earlier than planned; follow-up will continue for another 5 years. CONCLUSIONS After an average of four years of supplementation, the combination of beta carotene and vitamin A had no benefit and may have had an adverse effect on the incidence of lung cancer and on the risk of death from lung cancer, cardiovascular disease, and any cause in smokers and workers exposed to asbestos.


Environmental Health Perspectives | 2014

An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure

Richard T. Burnett; C. Arden Pope; Majid Ezzati; Casey Olives; Stephen S Lim; Sumi Mehta; Hwashin H. Shin; Gitanjali M. Singh; Bryan Hubbell; Michael Brauer; H. Ross Anderson; Kirk R. Smith; John R. Balmes; Nigel Bruce; Haidong Kan; Francine Laden; Annette Prüss-Üstün; Michelle C. Turner; Susan M. Gapstur; W. Ryan Diver; Aaron Cohen

Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. Objective: We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. Methods: We fit an integrated exposure–response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. Results: The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. Conclusions: We developed a fine particulate mass–based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available. Citation: Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR, Smith KR, Balmes JR, Bruce NG, Kan H, Laden F, Prüss-Ustün A, Turner MC, Gapstur SM, Diver WR, Cohen A. 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122:397–403; http://dx.doi.org/10.1289/ehp.1307049


American Journal of Respiratory and Critical Care Medicine | 2010

An Official American Thoracic Society Public Policy Statement: Novel Risk Factors and the Global Burden of Chronic Obstructive Pulmonary Disease

Mark D. Eisner; Nicholas R. Anthonisen; David B. Coultas; Nino Kuenzli; Rogelio Pérez-Padilla; Dirkje S. Postma; Isabelle Romieu; Edwin K. Silverman; John R. Balmes

RATIONALE Although cigarette smoking is the most important cause of chronic obstructive pulmonary disease (COPD), a substantial proportion of COPD cases cannot be explained by smoking alone. OBJECTIVES To evaluate the risk factors for COPD besides personal cigarette smoking. METHODS We constituted an ad hoc subcommittee of the American Thoracic Society Environmental and Occupational Health Assembly. An international group of members was invited, based on their scientific expertise in a specific risk factor for COPD. For each risk factor area, the committee reviewed the literature, summarized the evidence, and developed conclusions about the likelihood of it causing COPD. All conclusions were based on unanimous consensus. MEASUREMENTS AND MAIN RESULTS The population-attributable fraction for smoking as a cause of COPD ranged from 9.7 to 97.9%, but was less than 80% in most studies, indicating a substantial burden of disease attributable to nonsmoking risk factors. On the basis of our review, we concluded that specific genetic syndromes and occupational exposures were causally related to the development of COPD. Traffic and other outdoor pollution, secondhand smoke, biomass smoke, and dietary factors are associated with COPD, but sufficient criteria for causation were not met. Chronic asthma and tuberculosis are associated with irreversible loss of lung function, but there remains uncertainty about whether there are important phenotypic differences compared with COPD as it is typically encountered in clinical settings. CONCLUSIONS In public health terms, a substantive burden of COPD is attributable to risk factors other than smoking. To prevent COPD-related disability and mortality, efforts must focus on prevention and cessation of exposure to smoking and these other, less well-recognized risk factors.


Chest | 2008

Diagnosis and Management of Work-Related Asthma: American College of Chest Physicians Consensus Statement

Susan M. Tarlo; John R. Balmes; Ronald Balkissoon; Jeremy Beach; William S. Beckett; David I. Bernstein; Paul D. Blanc; Stuart M. Brooks; Clayton T. Cowl; Feroza Daroowalla; Philip Harber; Catherine Lemière; Gary M. Liss; Karin A. Pacheco; Carrie A. Redlich; Brian H. Rowe; Julia Heitzer

BACKGROUND A previous American College of Chest Physicians Consensus Statement on asthma in the workplace was published in 1995. The current Consensus Statement updates the previous one based on additional research that has been published since then, including findings relevant to preventive measures and work-exacerbated asthma (WEA). METHODS A panel of experts, including allergists, pulmonologists, and occupational medicine physicians, was convened to develop this Consensus Document on the diagnosis and management of work-related asthma (WRA), based in part on a systematic review, that was performed by the University of Alberta/Capital Health Evidence-Based Practice and was supplemented by additional published studies to 2007. RESULTS The Consensus Document defined WRA to include occupational asthma (ie, asthma induced by sensitizer or irritant work exposures) and WEA (ie, preexisting or concurrent asthma worsened by work factors). The Consensus Document focuses on the diagnosis and management of WRA (including diagnostic tests, and work and compensation issues), as well as preventive measures. WRA should be considered in all individuals with new-onset or worsening asthma, and a careful occupational history should be obtained. Diagnostic tests such as serial peak flow recordings, methacholine challenge tests, immunologic tests, and specific inhalation challenge tests (if available), can increase diagnostic certainty. Since the prognosis is better with early diagnosis and appropriate intervention, effective preventive measures for other workers with exposure should be addressed. CONCLUSIONS The substantial prevalence of WRA supports consideration of the diagnosis in all who present with new-onset or worsening asthma, followed by appropriate investigations and intervention including consideration of other exposed workers.


The Lancet | 2011

Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): a randomised controlled trial

Kirk R. Smith; John McCracken; Martin Weber; Alan Hubbard; Alisa Jenny; Lisa M. Thompson; John R. Balmes; Anaite Diaz; Byron Arana; Nigel Bruce

BACKGROUND Pneumonia causes more child deaths than does any other disease. Observational studies have indicated that smoke from household solid fuel is a significant risk factor that affects about half the worlds children. We investigated whether an intervention to lower indoor wood smoke emissions would reduce pneumonia in children. METHODS We undertook a parallel randomised controlled trial in highland Guatemala, in a population using open indoor wood fires for cooking. We randomly assigned 534 households with a pregnant woman or young infant to receive a woodstove with chimney (n=269) or to remain as controls using open woodfires (n=265), by concealed permuted blocks of ten homes. Fieldworkers visited homes every week until children were aged 18 months to record the childs health status. Sick children with cough and fast breathing, or signs of severe illness were referred to study physicians, masked to intervention status, for clinical examination. The primary outcome was physician-diagnosed pneumonia, without use of a chest radiograph. Analysis was by intention to treat (ITT). Infant 48-h carbon monoxide measurements were used for exposure-response analysis after adjustment for covariates. This trial is registered, number ISRCTN29007941. FINDINGS During 29,125 child-weeks of surveillance of 265 intervention and 253 control children, there were 124 physician-diagnosed pneumonia cases in intervention households and 139 in control households (rate ratio [RR] 0·84, 95% CI 0·63-1·13; p=0·257). After multiple imputation, there were 149 cases in intervention households and 180 in controls (0·78, 0·59-1·06, p=0·095; reduction 22%, 95% CI -6% to 41%). ITT analysis was undertaken for secondary outcomes: all and severe fieldworker-assessed pneumonia; severe (hypoxaemic) physician-diagnosed pneumonia; and radiologically confirmed, RSV-negative, and RSV-positive pneumonia, both total and severe. We recorded significant reductions in the intervention group for three severe outcomes-fieldworker-assessed, physician-diagnosed, and RSV-negative pneumonia--but not for others. We identified no adverse effects from the intervention. The chimney stove reduced exposure by 50% on average (from 2·2 to 1·1 ppm carbon monoxide), but exposure distributions for the two groups overlapped substantially. In exposure-response analysis, a 50% exposure reduction was significantly associated with physician-diagnosed pneumonia (RR 0·82, 0·70-0·98), the greater precision resulting from less exposure misclassification compared with use of stove type alone in ITT analysis. INTERPRETATION In a population heavily exposed to wood smoke from cooking, a reduction in exposure achieved with chimney stoves did not significantly reduce physician-diagnosed pneumonia for children younger than 18 months. The significant reduction of a third in severe pneumonia, however, if confirmed, could have important implications for reduction of child mortality. The significant exposure-response associations contribute to causal inference and suggest that stove or fuel interventions producing lower average exposures than these chimney stoves might be needed to substantially reduce pneumonia in populations heavily exposed to biomass fuel air pollution. FUNDING US National Institute of Environmental Health Sciences and WHO.


The Lancet | 2014

Outdoor air pollution and asthma

Michael Guarnieri; John R. Balmes

Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma.


European Respiratory Journal | 2003

The occupational burden of chronic obstructive pulmonary disease

Laura Trupin; Gillian Earnest; M. San Pedro; John R. Balmes; Mark D. Eisner; Edward H. Yelin; Patricia P. Katz; Paul D. Blanc

Although chronic obstructive pulmonary disease (COPD) is attributed predominantly to tobacco smoke, occupational exposures are also suspected risk factors for COPD. Estimating the proportion of COPD attributable to occupation is thus an important public health need. A randomly selected sample of 2,061 US residents aged 55–75 yrs completed telephone interviews covering respiratory health, general health status and occupational history. Occupational exposure during the longest-held job was determined by self-reported exposure to vapours, gas, dust or fumes and through a job exposure matrix. COPD was defined by self-reported physicians diagnosis. After adjusting for smoking status and demography, the odds ratio for COPD related to self-reported occupational exposure was 2.0 (95% confidence interval (CI) 1.6–2.5), resulting in an adjusted population attributable risk (PAR) of 20% (95% CI 13–27%). The adjusted odds ratio based on the job exposure matrix was 1.6 (95% CI 1.1–2.5) for high and 1.4 (95% CI 1.1–1.9) for intermediate probability of occupational dust exposure; the associated PAR was 9% (95% CI 3–15%). A narrower definition of COPD, excluding chronic bronchitis, was associated with a PAR based on reported occupational exposure of 31% (95% CI 19–41%). Past occupational exposures significantly increased the likelihood of chronic obstructive pulmonary disease, independent of the effects of smoking. Given that one in five cases of chronic obstructive pulmonary disease may be attributable to occupational exposures, clinicians and health policy-makers should address this potential avenue of chronic obstructive pulmonary disease causation and its prevention.


Journal of the American College of Cardiology | 2008

Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production.

Christian Heiss; Nicolas Amabile; Andrew Lee; Wendy May Real; Suzaynn F. Schick; David Lao; Maelene L. Wong; Sarah Jahn; Franca S. Angeli; Petros Minasi; Matthew L. Springer; S. Katharine Hammond; Stanton A. Glantz; William Grossman; John R. Balmes; Yerem Yeghiazarians

OBJECTIVES This study sought to analyze the effects of acute secondhand smoke (SHS) exposure on the number and function of endothelial progenitor cells (EPCs) over 24 h. BACKGROUND Secondhand smoke increases the risk of vascular disease and is a major public health concern, but the mechanism(s) of action are not fully understood. METHODS Healthy nonsmokers (age SEM 30.3 +/- 1.3 years, n = 10) were exposed to 30 min of SHS yielding cotinine levels commonly observed in passive smokers and to smokefree air on 2 separate days. Measurements were taken before exposure (baseline), immediately after (0 h), and at 1 h, 2.5 h, and 24 h after. The EPCs (CD133(+)/KDR(+), CD34(+)/KDR(+)) and endothelial microparticles (EMPs: CD31(+)/CD41(-), CD144(+), CD62e(+)) were determined in blood using flow cytometry. The EPC chemotaxis toward vascular endothelial growth factor was measured. Endothelial function was assessed as flow-mediated dilation (FMD) using ultrasound. RESULTS Secondhand smoke exposure increased EPCs and plasma vascular endothelial growth factor and completely abolished EPC chemotaxis during 24 h after exposure. Secondhand smoke increased EMPs and decreased FMD. Although FMD returned to baseline at 2.5 h, EMPs and vascular endothelial growth factor levels remained elevated at 24 h, suggesting endothelial activation and injury with functional impairment of the vascular endothelium. Exposure to smokefree air had no effect. Incubation of EPCs from nonexposed subjects with plasma isolated from SHS-exposed subjects in vitro decreased chemotaxis by blockade of vascular endothelial growth factor-stimulated nitric oxide production. CONCLUSIONS Brief exposure to real-world levels of SHS leads to sustained vascular injury characterized by mobilization of dysfunctional EPCs with blocked nitric oxide production. Our results suggest that SHS not only affects the vascular endothelium, but also the function of EPCs.


Annual Review of Public Health | 2014

Millions Dead: How Do We Know and What Does It Mean? Methods Used in the Comparative Risk Assessment of Household Air Pollution

Kirk R. Smith; Nigel Bruce; Kalpana Balakrishnan; Heather Adair-Rohani; John R. Balmes; Zoë Chafe; Mukesh Dherani; H. Dean Hosgood; Sumi Mehta; Daniel Pope; Eva Rehfuess

In the Comparative Risk Assessment (CRA) done as part of the Global Burden of Disease project (GBD-2010), the global and regional burdens of household air pollution (HAP) due to the use of solid cookfuels, were estimated along with 60+ other risk factors. This article describes how the HAP CRA was framed; how global HAP exposures were modeled; how diseases were judged to have sufficient evidence for inclusion; and how meta-analyses and exposure-response modeling were done to estimate relative risks. We explore relationships with the other air pollution risk factors: ambient air pollution, smoking, and secondhand smoke. We conclude with sensitivity analyses to illustrate some of the major uncertainties and recommendations for future work. We estimate that in 2010 HAP was responsible for 3.9 million premature deaths and ∼4.8% of lost healthy life years (DALYs), ranking it highest among environmental risk factors examined and one of the major risk factors of any type globally.


The Lancet Respiratory Medicine | 2014

Respiratory risks from household air pollution in low and middle income countries

Stephen B. Gordon; Nigel Bruce; Jonathan Grigg; Patricia L. Hibberd; Om Kurmi; Kin Bong Hubert Lam; Kevin Mortimer; Kwaku Poku Asante; Kalpana Balakrishnan; John R. Balmes; Naor Bar-Zeev; Michael N. Bates; Patrick N. Breysse; Sonia Buist; Zhengming Chen; Deborah Havens; Darby Jack; Surinder K. Jindal; Haidong Kan; Sumi Mehta; Peter P. Moschovis; Luke P. Naeher; Archana Patel; Rogelio Pérez-Padilla; Daniel Pope; Jamie Rylance; Sean Semple; William J. Martin

A third of the worlds population uses solid fuel derived from plant material (biomass) or coal for cooking, heating, or lighting. These fuels are smoky, often used in an open fire or simple stove with incomplete combustion, and result in a large amount of household air pollution when smoke is poorly vented. Air pollution is the biggest environmental cause of death worldwide, with household air pollution accounting for about 3·5-4 million deaths every year. Women and children living in severe poverty have the greatest exposures to household air pollution. In this Commission, we review evidence for the association between household air pollution and respiratory infections, respiratory tract cancers, and chronic lung diseases. Respiratory infections (comprising both upper and lower respiratory tract infections with viruses, bacteria, and mycobacteria) have all been associated with exposure to household air pollution. Respiratory tract cancers, including both nasopharyngeal cancer and lung cancer, are strongly associated with pollution from coal burning and further data are needed about other solid fuels. Chronic lung diseases, including chronic obstructive pulmonary disease and bronchiectasis in women, are associated with solid fuel use for cooking, and the damaging effects of exposure to household air pollution in early life on lung development are yet to be fully described. We also review appropriate ways to measure exposure to household air pollution, as well as study design issues and potential effective interventions to prevent these disease burdens. Measurement of household air pollution needs individual, rather than fixed in place, monitoring because exposure varies by age, gender, location, and household role. Women and children are particularly susceptible to the toxic effects of pollution and are exposed to the highest concentrations. Interventions should target these high-risk groups and be of sufficient quality to make the air clean. To make clean energy available to all people is the long-term goal, with an intermediate solution being to make available energy that is clean enough to have a health impact.

Collaboration


Dive into the John R. Balmes's collaboration.

Top Co-Authors

Avatar

Paul D. Blanc

University of California

View shared research outputs
Top Co-Authors

Avatar

Ira B. Tager

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Lurmann

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Trupin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge