Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Desjarlais is active.

Publication


Featured researches published by John R. Desjarlais.


Molecular Cancer Therapeutics | 2008

Optimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cells

John Richards; Greg A. Lazar; Hsing Chen; Wei Dang; John R. Desjarlais

The contribution of Fc-mediated effector functions to the therapeutic efficacy of some monoclonal antibodies has motivated efforts to enhance interactions with Fcγ receptors (FcγR). Although an early goal has been enhanced FcγRIIIa binding and natural killer (NK) cell antibody-dependent cell-mediated cytotoxicity (ADCC), other relevant cell types such as macrophages are dependent on additional activating receptors such as FcγRIIa. Here, we describe a set of engineered Fc variants with diverse FcγR affinities, including a novel substitution G236A that provides selectively enhanced binding to FcγRIIa relative to FcγRIIb. Variants containing this substitution have up to 70-fold greater FcγRIIa affinity and 15-fold improvement in FcγRIIa/FcγRIIb ratio and mediate enhanced phagocytosis of antibody-coated target cells by macrophages. Specific double and triple combination variants with this substitution are simultaneously capable of exhibiting high NK-mediated ADCC and high macrophage phagocytosis. In addition, we have used this unique set of variants to quantitatively probe the relative contributions of individual FcγR to effector functions mediated by NK cells and macrophages. These experiments show that FcγRIIa plays the most influential role for macrophages and, surprisingly, that the inhibitory receptor FcγRIIb has little effect on effector function. The enhancements in phagocytosis described here provide the potential to improve the performance of therapeutic antibodies targeting cancers. [Mol Cancer Ther 2008;7(8):2517–27]


Cancer Research | 2008

Potent In vitro and In vivo Activity of an Fc-Engineered Anti-CD19 Monoclonal Antibody against Lymphoma and Leukemia

Holly M. Horton; Matthew J. Bernett; Erik Pong; Matthias Peipp; Seung Y. Chu; John Richards; Igor Vostiar; Patrick F. Joyce; Roland Repp; John R. Desjarlais; Eugene A. Zhukovsky

CD19 is a pan B-cell surface receptor expressed from pro-B-cell development until its down-regulation during terminal differentiation into plasma cells. CD19 represents an attractive immunotherapy target for cancers of lymphoid origin due to its high expression levels on the vast majority of non-Hodgkins lymphomas and some leukemias. A humanized anti-CD19 antibody with an engineered Fc domain (XmAb5574) was generated to increase binding to Fcgamma receptors on immune cells and thus increase Fc-mediated effector functions. In vitro, XmAb5574 enhanced antibody-dependent cell-mediated cytotoxicity 100-fold to 1,000-fold relative to an anti-CD19 IgG1 analogue against a broad range of B-lymphoma and leukemia cell lines. Furthermore, XmAb5574 conferred antibody-dependent cell-mediated cytotoxicity against patient-derived acute lymphoblastic leukemia and mantle cell lymphoma cells, whereas the IgG1 analogue was inactive. XmAb5574 also increased antibody-dependent cellular phagocytosis and apoptosis. In vivo, XmAb5574 significantly inhibited lymphoma growth in prophylactic and established mouse xenograft models, and showed more potent antitumor activity than its IgG1 analogue. Comparisons with a variant incapable of Fcgamma receptor binding showed that engagement of these receptors is critical for optimal antitumor efficacy. These results suggest that XmAb5574 exhibits potent tumor cytotoxicity via direct and indirect effector functions and thus warrants clinical evaluation as an immunotherapeutic for CD19(+) hematologic malignancies.


Drug Discovery Today | 2003

Rational design and engineering of therapeutic proteins

Shannon Alicia Marshall; Greg A. Lazar; Arthur J. Chirino; John R. Desjarlais

An increasing number of engineered protein therapeutics are currently being developed, tested in clinical trials and marketed for use. Many of these proteins arose out of hit-and-miss efforts to discover specific mutations, fusion partners or chemical modifications that confer desired properties. Through these efforts, several useful strategies have emerged for rational optimization of therapeutic candidates. The controlled manipulation of the physical, chemical and biological properties of proteins enabled by structure-based simulation is now being used to refine established rational engineering approaches and to advance new strategies. These methods provide clear, hypothesis-driven routes to solve problems that plague many proteins and to create novel mechanisms of action. We anticipate that rational protein engineering will shape the field of protein therapeutics dramatically by improving existing products and enabling the development of novel therapeutic agents.


Protein Science | 2009

Thoroughly sampling sequence space: Large‐scale protein design of structural ensembles

Stefan M. Larson; Jeremy L. England; John R. Desjarlais; Vijay S. Pande

Modeling the inherent flexibility of the protein backbone as part of computational protein design is necessary to capture the behavior of real proteins and is a prerequisite for the accurate exploration of protein sequence space. We present the results of a broad exploration of sequence space, with backbone flexibility, through a novel approach: large‐scale protein design to structural ensembles. A distributed computing architecture has allowed us to generate hundreds of thousands of diverse sequences for a set of 253 naturally occurring proteins, allowing exciting insights into the nature of protein sequence space. Designing to a structural ensemble produces a much greater diversity of sequences than previous studies have reported, and homology searches using profiles derived from the designed sequences against the Protein Data Bank show that the relevance and quality of the sequences is not diminished. The designed sequences have greater overall diversity than corresponding natural sequence alignments, and no direct correlations are seen between the diversity of natural sequence alignments and the diversity of the corresponding designed sequences. For structures in the same fold, the sequence entropies of the designed sequences cluster together tightly. This tight clustering of sequence entropies within a fold and the separation of sequence entropy distributions for different folds suggest that the diversity of designed sequences is primarily determined by a structures overall fold, and that the designability principle postulated from studies of simple models holds in real proteins. This has important implications for experimental protein design and engineering, as well as providing insight into protein evolution.


Blood | 2009

The impact of Fc engineering on an anti-CD19 antibody: increased Fcγ receptor affinity enhances B-cell clearing in nonhuman primates

Jonathan Zalevsky; Irene W.L. Leung; Seung Y. Chu; Eugene A. Zhukovsky; John R. Desjarlais; David F. Carmichael; Chris E. Lawrence

CD19, a B cell-restricted receptor critical for B-cell development, is expressed in most B-cell malignancies. The Fc-engineered anti-CD19 antibody, XmAb5574, has enhanced Fcgamma receptor (FcgammaR) binding affinity, leading to improved FcgammaR-dependent effector cell functions and antitumor activity in murine xenografts compared with the non-Fc-engineered anti-CD19 IgG1 analog. Here, we use XmAb5574 and anti-CD19 IgG1 to further dissect effector cell functions in an immune system closely homologous to that of humans, the cynomolgus monkey. XmAb5574 infusion caused an immediate and dose-related B-cell depletion in the blood (to <10% of baseline levels) concomitant with a sustained reduction of natural killer (NK) cells. NK cells had fully recovered by day 15, whereas B-cell recovery was underway by day 57. B cells in secondary lymphoid tissues were depleted (to 34%-61% of vehicle), with involuted germinal centers apparent in the spleen. Anti-CD19 IgG1 had comparable serum exposure to XmAb5574 but demonstrated no B-cell depletion and no sustained NK-cell reduction. Thus, increasing FcgammaR binding affinity dramatically increased B-cell clearing. We propose that effector cell functions, possibly those involving NK cells, mediate XmAb5574 potency in cynomolgus monkeys, and that enhancing these mechanisms should advance the treatment of B-cell malignancies in humans.


Current Opinion in Structural Biology | 1998

Computer search algorithms in protein modification and design

John R. Desjarlais; Neil D. Clarke

The computer-aided design of protein sequences requires efficient search algorithms to handle the enormous combinatorial complexity involved. A variety of different algorithms have now been applied with some success. The choice of algorithm can influence the representation of the problem in several important ways--the discreteness of the configuration, the types of energy terms that can be used and the ability to find the global minimum energy configuration. The use of dead end elimination to design the complete sequence for a small protein motif and the use of genetic and mean-field algorithms to design hydrophobic cores for proteins represent the major themes of the past year.


Molecular Immunology | 2008

Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcγRIIb with Fc-engineered antibodies

Seung Y. Chu; Igor Vostiar; Gregory L. Moore; Greg A. Lazar; Erik Pong; Patrick F. Joyce; David E. Szymkowski; John R. Desjarlais

The humoral immune response requires antigen-specific B cell activation and subsequent terminal differentiation into plasma cells. Engagement of B cell antigen receptor (BCR) on mature B cells activates an intracellular signaling cascade, including calcium mobilization, which leads to cell proliferation and differentiation. Coengagement by immune complex of BCR with the inhibitory Fc receptor FcgammaRIIb, the only IgG receptor expressed on B cells, inhibits B cell activation signals through a negative feedback loop. We now describe antibodies that mimic the inhibitory effects of immune complex by high-affinity coengagement of FcgammaRIIb and the BCR coreceptor complex on human B cells. We engineered the Fc domain of an anti-CD19 antibody to generate variants with up to approximately 430-fold greater affinity to FcgammaRIIb. Relative to native IgG1, the FcgammaRIIb binding-enhanced (IIbE) variants strongly inhibited BCR-induced calcium mobilization and viability in primary human B cells. Inhibitory effects involved phosphorylation of SH2-containing inositol polyphosphate 5-phosphatase (SHIP), which is known to be involved in FcgammaRIIb-induced negative feedback of B cell activation by immune complex. Coengagement of BCR and FcgammaRIIb by IIbE variants also overcame the anti-apoptotic effects of BCR activation. The use of a single antibody to suppress B cell functions by coengagement of BCR and FcgammaRIIb may represent a novel approach in the treatment of B cell-mediated autoimmune diseases.


Journal of Immunology | 2011

Antibody-Mediated Coengagement of FcγRIIb and B Cell Receptor Complex Suppresses Humoral Immunity in Systemic Lupus Erythematosus

Holly M. Horton; Seung Y. Chu; Elizabeth C. Ortiz; Erik Pong; Saso Cemerski; Irene W.L. Leung; Noam Jacob; Jonathan Zalevsky; John R. Desjarlais; William Stohl; David Edmund Szymkowski

Engagement of the low-affinity Ab receptor FcγRIIb downregulates B cell activation, and its dysfunction is associated with autoimmunity in mice and humans. We engineered the Fc domain of an anti-human CD19 Ab to bind FcγRIIb with high affinity, promoting the coengagement of FcγRIIb with the BCR complex. This Ab (XmAb5871) stimulated phosphorylation of the ITIM of FcγRIIb and suppressed BCR-induced calcium mobilization, proliferation, and costimulatory molecule expression of human B cells from healthy volunteers and systemic lupus erythematosus (SLE) patients, as well as B cell proliferation induced by LPS, IL-4, or BAFF. XmAb5871 suppressed humoral immunity against tetanus toxoid and reduced serum IgM, IgG, and IgE levels in SCID mice engrafted with SLE or healthy human PBMC. XmAb5871 treatment also increased survival of mice engrafted with PBMC from a unique SLE patient. Unlike anti-CD20 Ab, coengagement of FcγRIIb and BCR complex did not promote B cell depletion in human PBMC cultures or in mice. Thus, amplification of the FcγRIIb inhibitory pathway in activated B cells may represent a novel B cell-targeted immunosuppressive therapeutic approach for SLE and other autoimmune diseases that should avoid the complications associated with B cell depletion.


Blood | 2010

CD19 targeting of chronic lymphocytic leukemia with a novel Fc-domain engineered monoclonal antibody

Farrukh T. Awan; Rosa Lapalombella; Rossana Trotta; Jonathan P. Butchar; Bo Yu; Don M. Benson; Julie M. Roda; Carolyn Cheney; Xiaokui Mo; Amy Lehman; Jeffrey A. Jones; Joseph M. Flynn; David Jarjoura; John R. Desjarlais; Susheela Tridandapani; Michael A. Caligiuri; Natarajan Muthusamy; John C. Byrd

CD19 is a B cell-specific antigen expressed on chronic lymphocytic leukemia (CLL) cells but to date has not been effectively targeted with therapeutic monoclonal antibodies. XmAb5574 is a novel engineered anti-CD19 monoclonal antibody with a modified constant fragment (Fc)-domain designed to enhance binding of FcgammaRIIIa. Herein, we demonstrate that XmAb5574 mediates potent antibody-dependent cellular cytotoxicity (ADCC), modest direct cytotoxicity, and antibody-dependent cellular phagocytosis but not complement-mediated cytotoxicity against CLL cells. Interestingly, XmAb5574 mediates significantly higher ADCC compared with both the humanized anti-CD19 nonengineered antibody it is derived from and also rituximab, a therapeutic antibody widely used in the treatment of CLL. The XmAb5574-dependent ADCC is mediated by natural killer (NK) cells through a granzyme B-dependent mechanism. The NK cell-mediated cytolytic and secretory function with XmAb5574 compared with the nonengineered antibody is associated with enhanced NK-cell activation, interferon production, extracellular signal-regulated kinase phosphorylation downstream of Fcgamma receptor, and no increased NK-cell apoptosis. Notably, enhanced NK cell-mediated ADCC with XmAb5574 was enhanced further by lenalidomide. These findings provide strong support for further clinical development of XmAb5574 as both a monotherapy and in combination with lenalidomide for the therapy of CLL and related CD19(+) B-cell malignancies.


Structure | 1999

Solution structure and dynamics of a designed hydrophobic core variant of ubiquitin

Eric C. Johnson; Greg A. Lazar; John R. Desjarlais; Tracy M. Handel

BACKGROUND The recent merger of computation and protein design has resulted in a burst of success in the generation of novel proteins with native-like properties. A critical component of this coupling between theory and experiment is a detailed analysis of the structures and stabilities of designed proteins to assess and improve the accuracy of design algorithms. RESULTS Here we report the solution structure of a hydrophobic core variant of ubiquitin, referred to as 1D7, which was designed with the core-repacking algorithm ROC. As a measure of conformational specificity, we also present amide exchange protection factors and backbone and sidechain dynamics. The results indicate that 1D7 is similar to wild-type (WT) ubiquitin in backbone structure and degree of conformational specificity. We also observe a good correlation between experimentally determined sidechain structures and those predicted by ROC. However, evaluation of the core sidechain conformations indicates that, in general, 1D7 has more sidechains in less statistically favorable conformations than WT. CONCLUSIONS Our results provide an explanation for the lower stability of 1D7 compared to WT, and suggest modifications to design algorithms that may improve the accuracy with which structure and stability are predicted. The results also demonstrate that core packing can affect conformational flexibility in subtle ways that are likely to be important for the design of function and protein-ligand interactions.

Collaboration


Dive into the John R. Desjarlais's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur J. Chirino

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bassil I. Dahiyat

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rumana Rashid

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge