Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Doucet is active.

Publication


Featured researches published by John R. Doucet.


The Journal of Comparative Neurology | 1997

Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats.

John R. Doucet; David K. Ryugo

Local circuit interactions between the dorsal and ventral divisions of the cochlear nucleus are known to influence the evoked responses of the resident neurons to sound. In the present study, we examined the projections of neurons in the ventral cochlear nucleus to the dorsal cochlear nucleus by using retrograde transport of biotinylated dextran amine injected into restricted but different regions of the dorsal cochlear nucleus. In all cases, we found retrogradely labeled granule, unipolar brush, and chestnut cells in the granule cell domain, and retrogradely labeled multipolar cells in the magnocellular core of the ventral cochlear nucleus. A small number of the labeled multipolar cells were found along the margins of the ventral cochlear nucleus, usually near the boundaries of the granule cell domain. Spherical bushy, globular bushy, and octopus cells were not labeled. Retrogradely‐labeled auditory nerve fibers and the majority of labeled multipolar neurons formed a narrow sheet extending across the medial‐to‐lateral extent of the ventral cochlear nucleus whose dorsoventral position was topographically related to the injection site. Labeled multipolar cells within the core of the ventral cochlear nucleus could be divided into at least two distinct groups. Planar neurons were most numerous, their somata found within the associated band of labeled fibers, and their dendrites oriented within this band. This arrangement mimics the organization of isofrequency contours and implies that planar neurons respond best to a narrow range of frequencies. In contrast, radiate neurons were infrequent, found scattered throughout the ventral cochlear nucleus, and had long dendrites oriented perpendicular to the isofrequency contours. This dendritic orientation suggests that radiate neurons are sensitive to a broad range of frequencies. These structural differences between planar and radiate neurons suggest that they subserve separate functions in acoustic processing. J. Comp. Neurol. 385:245–264, 1997.


The Journal of Comparative Neurology | 1999

Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus

John R. Doucet; Adam T. Ross; M. Boyd Gillespie; David K. Ryugo

Certain distinct populations of neurons in the dorsal cochlear nucleus are inhibited by a neural source that is responsive to a wide range of acoustic frequencies. In this study, we examined the glycine immunoreactivity of two types of ventral cochlear nucleus neurons (planar and radiate) in the rat which project to the dorsal cochlear nucleus (DCN) and thus, might be responsible for this inhibition. Previously, we proposed that planar neurons provided a tonotopic and narrowly tuned input to the DCN, whereas radiate neurons provided a broadly tuned input and thus, were strong candidates as the source of broadband inhibition (Doucet and Ryugo [1997] J. Comp. Neurol. 385:245–264). We tested this idea by combining retrograde labeling and glycine immunohistochemical protocols. Planar and radiate neurons were first retrogradely labeled by injecting biotinylated dextran amine into a restricted region of the dorsal cochlear nucleus. The labeled cells were visualized using streptavidin conjugated to indocarbocyanine (Cy3), a fluorescent marker. Sections that contained planar or radiate neurons were then processed for glycine immunocytochemistry using diaminobenzidine as the chromogen. Immunostaining of planar neurons was light, comparable to that of excitatory neurons (pyramidal neurons in the DCN), whereas immunostaining of radiate neurons was dark, comparable to that of glycinergic neurons (cartwheel cells in the dorsal cochlear nucleus and principal cells in the medial nucleus of the trapezoid body). These results are consistent with the hypothesis that radiate neurons in the ventral cochlear nucleus subserve the wideband inhibition observed in the dorsal cochlear nucleus. J. Comp. Neurol. 408:515–531, 1999.


The Journal of Comparative Neurology | 2005

Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat

Charles André Haenggeli; Tan Pongstaporn; John R. Doucet; David K. Ryugo

The integration of information across sensory modalities enables sound to be processed in the context of position, movement, and object identity. Inputs to the granule cell domain (GCD) of the cochlear nucleus have been shown to arise from somatosensory brain stem structures, but the nature of the projection from the spinal trigeminal nucleus is unknown. In the present study, we labeled spinal trigeminal neurons projecting to the cochlear nucleus using the retrograde tracer, Fast Blue, and mapped their distribution. In a second set of experiments, we injected the anterograde tracer biotinylated dextran amine into the spinal trigeminal nucleus and studied the resulting anterograde projections with light and electron microscopy. Spinal trigeminal neurons were distributed primarily in pars caudalis and interpolaris and provided inputs to the cochlear nucleus. Their axons gave rise to small (1–3 μm in diameter) en passant swellings and terminal boutons in the GCD and deep layers of the dorsal cochlear nucleus. Less frequently, larger (3–15 μm in diameter) lobulated endings known as mossy fibers were distributed within the GCD. Ventrally placed injections had an additional projection into the anteroventral cochlear nucleus, whereas dorsally placed injections had an additional projection into the posteroventral cochlear nucleus. All endings were filled with round synaptic vesicles and formed asymmetric specializations with postsynaptic targets, implying that they are excitatory in nature. The postsynaptic targets of these terminals included dendrites of granule cells. These projections provide a structural substrate for somatosensory information to influence auditory processing at the earliest level of the central auditory pathways. J. Comp. Neurol. 484:191–205, 2005.


Experimental Brain Research | 2003

Multimodal inputs to the granule cell domain of the cochlear nucleus

David K. Ryugo; Charles André Haenggeli; John R. Doucet

There is growing evidence that hearing involves the integration of many brain functions, including vision, balance, somatic sensation, learning and memory, and emotional state. Some of these integrative processes begin at the earliest stages of the central auditory system. In this review, we will discuss evidence that reveals multimodal projections into the granule cell domain of the cochlear nucleus.


Experimental Brain Research | 2003

The source of corticocollicular and corticobulbar projections in area Te1 of the rat

John R. Doucet; Diana L. Molavi; David K. Ryugo

Cortical area Te1 in the rat commonly is associated with primary auditory cortex. It is the source of direct projections to the inferior colliculus (IC), superior olivary complex (SOC), and the cochlear nucleus (CN). A question that arises is whether these descending pathways derive from a common source or separate populations of cortical neurons. We addressed this question in seven rats by injecting either Diamidino yellow (DiY) or Fast blue (FB) into the IC and injecting the other tracer into the CN (n=4) or SOC (n=3). All injections were made on the left side of the brain. In a sample of sections through area Te1 in both hemispheres, we counted single- and double-labeled cells. We estimate that IC-projecting cells outnumber those projecting to the CN or SOC by at least a factor of ten. The source of corticofugal pathways to the left IC was heavily biased towards the same side of the brain (ipsi/contra ratio 8±2.5), whereas it was more equally distributed between the two hemispheres for the left CN and SOC (ipsi/contra ratios ranged from 0.7–2.3). Finally, we observed that only 10–20% of those cells filled with a tracer injection in the CN or SOC also contained the tracer injected into the IC. In a previous study, we observed a similarly small percentage of double labeled cells when FB and DiY were injected into the CN and SOC, respectively. Combined with the distinct laminar distribution of IC-, SOC-, and CN-projecting neurons within layer V, the results suggest that these three pathways largely derive from different populations of cortical neurons.


The Journal of Comparative Neurology | 2001

Projections of the pontine nuclei to the cochlear nucleus in rats

Matthias Ohlrogge; John R. Doucet; David K. Ryugo

In the cochlear nucleus, there is a magnocellular core of neurons whose axons form the ascending auditory pathways. Surrounding this core is a thin shell of microneurons called the granule cell domain (GCD). The GCD receives auditory and nonauditory inputs and projects in turn to the dorsal cochlear nucleus, thus appearing to serve as a central locus for integrating polysensory information and descending feedback. Nevertheless, the source of many of these inputs and the nature of the synaptic connections are relatively unknown. We used the retrograde tracer Fast Blue to demonstrate that a major projection arises from the contralateral pontine nuclei (PN) to the GCD. The projecting cells are more densely located in the ventral and rostral parts of the PN. They also are clustered into a lateral and a medial group. Injections of anterograde tracers into the PN labeled mossy fibers in the contralateral GCD. The terminals are confined to those parts of the GCD immediately surrounding the ventral cochlear nucleus. There is no PN projection to the dorsal cochlear nucleus. These endings have the form of bouton and mossy fiber endings as revealed by light and electron microscopy. The PN represent a key station between the cerebral and cerebellar cortices, so the pontocochlear nucleus projection emerges as a significant source of highly processed information that is introduced into the early stages of the auditory pathway. The cerebropontocerebellar pathway may impart coordination and timing cues to the motor system. In an analogous way, perhaps the cerebropontocochlear nucleus projection endows the auditory system with a timing mechanism for extracting temporal information. J. Comp. Neurol. 436:290–303, 2001.


Brain Research | 2002

The cellular origin of corticofugal projections to the superior olivary complex in the rat

John R. Doucet; Liana Rose; David K. Ryugo

Corticofugal pathways originating in auditory cortex innervate most subcortical auditory nuclei in the ascending pathway [Auditory Neurosci. 1 (1995) 287-308; J. Comp. Neurol. 371 (1996) 15-40]. Our goal is to determine if these projections arise from the same neurons or if different neurons project to each of the separate structures. We also seek to identify the layers and fields of auditory cortex from which these neurons originate. In the present study, we answer these questions with respect to the projections to the superior olivary complex (SOC). Fluorescent retrograde tracers, Fast Blue (FB) or Diamidino Yellow (DiY), were injected into the SOC and the pattern of labeled cells was determined in temporal neocortex. We also injected FB into the granule cell domain (GCD) of the cochlear nucleus. Cortical projections to the GCD derive exclusively from layer V pyramidal cells in primary auditory cortex [Brain Res. 706 (1996) 97-102]. Thus the pattern of labeling produced by injections in the GCD provided a reference for interpreting the labeling after SOC injections. Layer V pyramidal cells project to the SOC, and these neurons were distributed bilaterally in primary and secondary areas of auditory cortex. The projections to the SOC from primary auditory cortex are predominantly uncrossed, whereas those from secondary auditory cortex are nearly equal for the two hemispheres. In animals that received injections of FB in the GCD and DiY in the SOC, cells labeled by each injection had a different laminar distribution and very few cells were double labeled. These data suggest that the cortical pathways ending in the cochlear nucleus and SOC are largely independent. We discuss the implications of these findings with respect to the multifunctional nature of the SOC in brainstem auditory processing.


The Journal of Comparative Neurology | 2003

Axonal pathways to the lateral superior olive labeled with biotinylated dextran amine injections in the dorsal cochlear nucleus of rats

John R. Doucet; David K. Ryugo

The lateral superior olive (LSO) contains cells that are sensitive to intensity differences between the two ears, a feature used by the brain to localize sounds in space. This report describes a source of input to the LSO that complements bushy cell projections from the ventral cochlear nucleus (VCN). Injections of biotinylated dextran amine (BDA) into the dorsal cochlear nucleus (DCN) of the rat label axons and swellings in several brainstem structures, including the ipsilateral LSO. Labeling in the ipsilateral LSO was confined to a thin band that extended throughout the length of the structure such that it resembled an LSO isofrequency lamina. The source of this labeled pathway was not obvious, because DCN neurons do not project to the LSO, and VCN bushy cells were not filled by these injections. Filled neurons in several brainstem structures emerged as possible sources. Three observations suggest that most of the axonal labeling in the LSO derives from a single source. First, the number of labeled VCN planar multipolar cells and the amount of labeling in the LSO were consistent and robust across animals. In contrast, the number of labeled cells in most other structures was small and highly variable. Second, the locations of planar cells and filled axons in the LSO were related topographically to the position of the DCN injection site. Third, labeled terminal arborizations in the LSO arose from collaterals of axons in the trapezoid body (output tract of planar cells). We infer that planar multipolar cells, in addition to bushy cells, are a source of ascending input from the cochlear nucleus to the LSO. J. Comp. Neurol. 461:452–465, 2003.


Neuroreport | 2002

Commissural glycinergic inhibition of bushy and stellate cells in the anteroventral cochlear nucleus

Alexandre Babalian; Anne Valerie Jacomme; John R. Doucet; David K. Ryugo; Eric M. Rouiller

Synaptic inputs from one cochlear nucleus (CN) to the other can play an important role in modulating the activity of CN neurons. Using the isolated whole brain preparation of the guinea pig, we tested the effects of electrical stimulation of the contralateral auditory nerve (AN) on intracellularly recorded and stained neurons of the anteroventral cochlear nucleus. Stimulation of the contralateral AN evoked only inhibitory postsynaptic potentials (IPSPs) in 63% of recorded neurons, including bushy and stellate cells. The latency of most IPSPs (88%) was in the range 3.3–7.6 ms, consistent with mono- and disynaptic transmission from the contralateral CN. The IPSPs had an average amplitude of 2.6 ± 1.9 mV and were blocked by strychnine suggesting their glycinergic nature. These data, together with our similar findings in other CN subdivisions, indicate that principal cells of the CN contribute to binaural interactions at earliest stages of acoustic processing.


Jaro-journal of The Association for Research in Otolaryngology | 2009

Commissural Neurons in the Rat Ventral Cochlear Nucleus

John R. Doucet; Nicole M. Lenihan; Bradford J. May

Commissural neurons connect the cochlear nucleus complexes of both ears. Previous studies have suggested that the neurons may be separated into two anatomical subtypes on the basis of percent apposition (PA); that is, the percentage of the soma apposed by synaptic terminals. The present study combined tract tracing with synaptic immunolabeling to compare the soma area, relative number, and location of Type I (low PA) and Type II (high PA) commissural neurons in the ventral cochlear nucleus (VCN) of rats. Confocal microscopic analysis revealed that 261 of 377 (69%) commissural neurons have medium-sized somata with Type I axosomatic innervation. The commissural neurons also showed distinct topographical distributions. The majority of Type I neurons were located in the small cell cap of the VCN, which serves as a nexus for regulatory pathways within the auditory brainstem. Most Type II neurons were found in the magnocellular core. This anatomical dichotomy should broaden current views on the function of the commissural pathway that stress the fast inhibitory interactions generated by Type II neurons. The more prevalent Type I neurons may underlie slow regulatory influences that enhance binaural processing or the recovery of function after injury.

Collaboration


Dive into the John R. Doucet's collaboration.

Top Co-Authors

Avatar

David K. Ryugo

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Charles André Haenggeli

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Liana Rose

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tan Pongstaporn

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Adam T. Ross

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

David R. Friedland

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Diana L. Molavi

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

M. Boyd Gillespie

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Matthias Ohlrogge

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nicole M. Lenihan

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge