John R. Frederick
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John R. Frederick.
Journal of Heart and Lung Transplantation | 2008
J. Raymond Fitzpatrick; John R. Frederick; Vivian M. Hsu; Elliott D. Kozin; Mary Lou O'Hara; Elan Howell; Deborah Dougherty; Ryan C. McCormick; Carine Laporte; Jeffrey E. Cohen; Kevin W. Southerland; Jessica L. Howard; Mariell Jessup; Rohinton J. Morris; Michael A. Acker; Y. Joseph Woo
BACKGROUND Right ventricular (RV) failure after left ventricular assist device (LVAD) placement is a serious complication and is difficult to predict. In the era of destination therapy and the total artificial heart, predicting post-LVAD RV failure requiring mechanical support is extremely important. METHODS We reviewed patient characteristics, laboratory values and hemodynamic data from 266 patients who underwent LVAD placement at the University of Pennsylvania from April 1995 to June 2007. RESULTS Of 266 LVAD recipients, 99 required RV assist device (BiVAD) placement (37%). We compared 36 parameters between LVAD (n = 167) and BiVAD patients (n = 99) to determine pre-operative risk factors for RV assist device (RVAD) need. By univariate analysis, 23 variables showed statistically significant differences between the two groups (p < or = 0.05). By multivariate logistic regression, cardiac index < or =2.2 liters/min/m(2) (odds ratio [OR] 5.7), RV stroke work index < or =0.25 mm Hg . liter/m(2) (OR 5.1), severe pre-operative RV dysfunction (OR 5.0), pre-operative creatinine > or =1.9 mg/dl (OR 4.8), previous cardiac surgery (OR 4.5) and systolic blood pressure < or =96 mm Hg (OR 2.9) were the best predictors of RVAD need. CONCLUSIONS The most significant predictors for RVAD need were cardiac index, RV stroke work index, severe pre-operative RV dysfunction, creatinine, previous cardiac surgery and systolic blood pressure. Using these data, we constructed an algorithm that can predict which LVAD patients will require RVAD with >80% sensitivity and specificity.
The Journal of Thoracic and Cardiovascular Surgery | 2009
J. Raymond Fitzpatrick; John R. Frederick; William Hiesinger; Vivian M. Hsu; Ryan C. McCormick; Elliott D. Kozin; Carine M. Laporte; Mary Lou O'Hara; Elan Howell; Deborah Dougherty; Jeffrey E. Cohen; Kevin W. Southerland; Jessica L. Howard; E. Carter Paulson; Michael A. Acker; Rohinton J. Morris; Y. Joseph Woo
OBJECTIVE It is generally accepted that patients who require biventricular assist device support have poorer outcomes than those requiring isolated left ventricular assist device support. However, it is unknown how the timing of biventricular assist device insertion affects outcomes. We hypothesized that planned biventricular assist device insertion improves survival compared with delayed conversion of left ventricular assist device support to biventricular assist device support. METHODS We reviewed and compared outcomes of 266 patients undergoing left ventricular assist device or biventricular assist device placement at the University of Pennsylvania from April 1995 to June 2007. We subdivided patients receiving biventricular assist devices into planned biventricular assist device (P-BiVAD) and delayed biventricular assist device (D-BiVAD) groups based on the timing of right ventricular assist device insertion. We defined the D-BiVAD group as any failure of isolated left ventricular assist device support. RESULTS Of 266 patients who received left ventricular assist devices, 99 (37%) required biventricular assist device support. We compared preoperative characteristics, successful bridging to transplantation, survival to hospital discharge, and Kaplan-Meier 1-year survival between the P-BiVAD (n = 71) and D-BiVAD (n = 28) groups. Preoperative comparison showed that patients who ultimately require biventricular support have similar preoperative status. Left ventricular assist device (n = 167) outcomes in all categories exceeded both P-BiVAD and D-BiVAD group outcomes. Furthermore, patients in the P-BiVAD group had superior survival to discharge than patients in the D-BiVAD group (51% vs 29%, P < .05). One-year and long-term Kaplan-Meier survival distribution confirmed this finding. There was also a trend toward improved bridging to transplantation in the P-BiVAD (n = 55) versus D-BiVAD (n = 22) groups (65% vs 45%, P = .10). CONCLUSION When patients at high risk for failure of isolated left ventricular assist device support are identified, proceeding directly to biventricular assist device implantation is advised because early institution of biventricular support results in dramatic improvement in survival.
Circulation | 2010
John R. Frederick; J. Raymond Fitzpatrick; Ryan C. McCormick; David A. Harris; Ah-Young Kim; Jeffrey R. Muenzer; Nicole A. Marotta; Maximilian J. Smith; Jeffrey E. Cohen; William Hiesinger; Pavan Atluri; Y. Joseph Woo
Background— Myocardial ischemia causes cardiomyocyte death, adverse ventricular remodeling, and ventricular dysfunction. Endothelial progenitor cells (EPCs) have been shown to ameliorate this process, particularly when activated with stromal cell-derived factor-1&agr; (SDF), known to be the most potent EPC chemokine. We hypothesized that implantation of a tissue-engineered extracellular matrix (ECM) scaffold seeded with EPCs primed with SDF could induce borderzone neovasculogenesis, prevent adverse geometric remodeling, and preserve ventricular function after myocardial infarction. Methods and Results— Lewis rats (n=82) underwent left anterior descending artery ligation to induce myocardial infarction. EPCs were isolated, characterized, and cultured on a vitronectin/collagen scaffold and primed with SDF to generate the activated EPC matrix (EPCM). EPCM was sutured to the anterolateral left ventricular wall, which included the region of ischemia. Control animals received sutures but no EPCM. Additional groups underwent application of the ECM alone, ECM primed with SDF (ECM+SDF), and ECM seeded with EPCs but not primed with SDF (ECM+SDF). At 4 weeks, borderzone myocardial tissue demonstrated increased levels of vascular endothelial growth factor in the EPCM group. When compared to controls, Vessel density as assessed by immunohistochemical microscopy was significantly increased in the EPCM group (4.1 versus 6.2 vessels/high-powered field; P<0.001), and microvascular perfusion measured by lectin microangiography was enhanced 4-fold (0.7% versus 2.7% vessel volume/section volume; P=0.04). Comparisons to additional groups also showed a significantly improved vasculogenic response in the EPCM group. Ventricular geometry and scar fraction assessed by digital planimetric analysis of sectioned hearts exhibited significantly preserved left ventricular internal diameter (9.7 mm versus 8.6 mm; P=0.005) and decreased infarct scar formation expressed as percent of total section area (16% versus 7%; P=0.002) when compared with all other groups. In addition, EPCM animals showed a significant preservation of function as measured by echocardiography, pressure-volume conductance, and Doppler flow. Conclusions— Extracellular matrix seeded with EPCs primed with SDF induces borderzone neovasculogenesis, attenuates adverse ventricular remodeling, and preserves ventricular function after myocardial infarction.
Circulation | 2011
William Hiesinger; Jose Manuel Perez-Aguilar; Pavan Atluri; Nicole A. Marotta; John R. Frederick; J. Raymond Fitzpatrick; Ryan C. McCormick; Jeffrey R. Muenzer; Elaine C. Yang; Rebecca D. Levit; Li-Jun Yuan; John W. MacArthur; Jeffery G. Saven; Y. Joseph Woo
Background— Experimentally, exogenous administration of recombinant stromal cell–derived factor-1&agr; (SDF) enhances neovasculogenesis and cardiac function after myocardial infarction. Smaller analogs of SDF may provide translational advantages including enhanced stability and function, ease of synthesis, lower cost, and potential modulated delivery via engineered biomaterials. In this study, computational protein design was used to create a more efficient evolution of the native SDF protein. Methods and Results— Protein structure modeling was used to engineer an SDF polypeptide analog (engineered SDF analog [ESA]) that splices the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a diproline segment designed to limit the conformational flexibility of the peptide backbone and retain the relative orientation of these segments observed in the native structure of SDF. Endothelial progenitor cells (EPCs) in ESA gradient, assayed by Boyden chamber, showed significantly increased migration compared with both SDF and control gradients. EPC receptor activation was evaluated by quantification of phosphorylated AKT, and cells treated with ESA yielded significantly greater phosphorylated AKT levels than SDF and control cells. Angiogenic growth factor assays revealed a distinct increase in angiopoietin-1 expression in the ESA- and SDF-treated hearts. In addition, CD-1 mice (n=30) underwent ligation of the left anterior descending coronary artery and peri-infarct intramyocardial injection of ESA, SDF-1&agr;, or saline. At 2 weeks, echocardiography demonstrated a significant gain in ejection fraction, cardiac output, stroke volume, and fractional area change in mice treated with ESA compared with controls. Conclusions— Compared with native SDF, a novel engineered SDF polypeptide analog (ESA) more efficiently induces EPC migration and improves post–myocardial infarction cardiac function and thus offers a more clinically translatable neovasculogenic therapy.
The Annals of Thoracic Surgery | 2013
John R. Frederick; Elaine Yang; Alen Trubelja; Nimesh D. Desai; Wilson Y. Szeto; Alberto Pochettino; Joseph E. Bavaria; Y. Joseph Woo
Femoral and axillary cannulation for arterial inflow in acute type A aortic dissection are the most commonly used cannulation strategies in current practice. More recently, our group and others have successfully used a central cannulation technique with excellent results. Although this approach has been described, specific technical details have not been clearly defined. In addition, the ideal anatomic characteristics of different types of aortic dissections amenable to central cannulation have not been delineated. The purpose of this brief communication is to describe the technical and procedural details specific to cannulation of the dissected ascending aorta and to propose a classification scheme of ascending aortic dissection anatomy based on difficulty of central cannulation.
The Journal of Thoracic and Cardiovascular Surgery | 2010
J. Raymond Fitzpatrick; John R. Frederick; Ryan C. McCormick; David A. Harris; Ah-Young Kim; Jeffrey R. Muenzer; Alex J. Gambogi; Jing Ping Liu; E. Carter Paulson; Y. Joseph Woo
OBJECTIVE Microvascular malperfusion after myocardial infarction leads to infarct expansion, adverse remodeling, and functional impairment. Native reparative mechanisms exist but are inadequate to vascularize ischemic myocardium. We hypothesized that a 3-dimensional human fibroblast culture (3DFC) functions as a sustained source of angiogenic cytokines, thereby augmenting native angiogenesis and limiting adverse effects of myocardial ischemia. METHODS Lewis rats underwent ligation of the left anterior descending coronary artery to induce heart failure; experimental animals received a 3DFC scaffold to the ischemic region. Border-zone tissue was analyzed for the presence of human fibroblast surface protein, vascular endothelial growth factor, and hepatocyte growth factor. Cardiac function was assessed with echocardiography and pressure-volume conductance. Hearts underwent immunohistochemical analysis of angiogenesis by co-localization of platelet endothelial cell adhesion molecule and alpha smooth muscle actin and by digital analysis of ventricular geometry. Microvascular angiography was performed with fluorescein-labeled lectin to assess perfusion. RESULTS Immunoblotting confirmed the presence of human fibroblast surface protein in rats receiving 3DFC, indicating survival of transplanted cells. Increased expression of vascular endothelial growth factor and hepatocyte growth factor in experimental rats confirmed elution by the 3DFC. Microvasculature expressing platelet endothelial cell adhesion molecule/alpha smooth muscle actin was increased in infarct and border-zone regions of rats receiving 3DFC. Microvascular perfusion was also improved in infarct and border-zone regions in these rats. Rats receiving 3DFC had increased wall thickness, smaller infarct area, and smaller infarct fraction. Echocardiography and pressure-volume measurements showed that cardiac function was preserved in these rats. CONCLUSIONS Application of a bioengineered 3DFC augments native angiogenesis through delivery of angiogenic cytokines to ischemic myocardium. This yields improved microvascular perfusion, limits infarct progression and adverse remodeling, and improves ventricular function.
Annals of cardiothoracic surgery | 2012
John R. Frederick; Y. Joseph Woo
One of the first successful repairs of a thoracoabdominal aortic aneurysm (TAAA) in the United States was reported in 1955 by Etheredge (1). Utilizing a 5-mm aortic shunt, an in situ aortic homograft repair of an extent IV aneurysm was performed via a thoracoabdominal incision (Video 1). This included anastomoses of the celiac and superior mesenteric arteries. That same year, Charles Rob, an English surgeon, also reported on his experience of 33 abdominal aortic aneurysms, six of which required lower thoracic aortic clamping approached via a thoracoabdominal incision. Rob’s report predated Etheredge’s manuscript, and he is credited with the first description of a TAAA repair (2). Cooley and DeBakey’s initial report of a descending thoracic aortic aneurysm (likely an extent I) approached via a thoracoabdominal incision in 1953 predated Etheredge’s manuscript as well (3), but this repair did not involve direct manipulation of the abdominal visceral arteries and thus Etheredge and Robb remain the first surgeons to describe such a technique. Shortly thereafter, DeBakey reported on four cases similar to Etheredge’s patient utilizing aortic homograft as the conduit, concluding that aortic shunting was imperative to success (4). His subsequent report in 1965 included 42 patients in whom knitted Dacron grafts were utilized as the initial shunt and then converted to the formal conduit by stepwise side branch anastomoses of the visceral arteries (5). Most of these initial reports involved aneurysmectomy which prolonged operative times and led to significant morbidity, and Crawford is credited with pioneering the technique of an intra-aortic anastomosis after longitudinal division of the sac. In addition, he also described the technique of a single pedicled visceral segment anastomosis including the celiac, superior mesenteric, and right renal arteries, followed by a left renal anastomosis with sequential reperfusion after the completion of each (6). His results were superb with only one death in 23 consecutive cases, a mortality rate that is rarely achieved in modern practice. Along with the utilization of cardiopulmonary bypass, hypothermic circulatory arrest, and cerebrospinal fluid drainage, Crawford’s approach most resembles contemporary techniques performed at major centers today.
Circulation | 2013
Pavan Atluri; Alen Trubelja; Alexander S. Fairman; Philip Hsiao; John W. MacArthur; Jeffrey E. Cohen; Yasuhiro Shudo; John R. Frederick; Y. Joseph Woo
Background— Cell-mediated angiogenic therapy for ischemic heart disease has had disappointing results. The lack of clinical translatability may be secondary to cell death and systemic dispersion with cell injection. We propose a novel tissue-engineered therapy, whereby extracellular matrix scaffold seeded with endothelial progenitor cells (EPCs) can overcome these limitations using an environment in which the cells can thrive, enabling an insult-free myocardial cell delivery to normalize myocardial biomechanics. Methods and Results— EPCs were isolated from the long bones of Wistar rat bone marrow. The cells were cultured for 7 days in media or seeded at a density of 5×106 cells/cm2 on a collagen/vitronectin matrix. Seeded EPCs underwent ex vivo modification with stromal cell–derived factor-1&agr; (100 ng/mL) to potentiate angiogenic properties and enhance paracrine qualities before construct formation. Scanning electron microscopy and confocal imaging confirmed EPC–matrix adhesion. In vitro vasculogenic potential was assessed by quantifying EPC cell migration and vascular differentiation. There was a marked increase in vasculogenesis in vitro as measured by angiogenesis assay (8 versus 0 vessels/hpf; P=0.004). The construct was then implanted onto ischemic myocardium in a rat model of acute myocardial infarction. Confocal microscopy demonstrated a significant migration of EPCs from the construct to the myocardium, suggesting a direct angiogenic effect. Myocardial biomechanical properties were uniaxially quantified by elastic modulus at 5% to 20% strain. Myocardial elasticity normalized after implant of our tissue-engineered construct (239 kPa versus normal=193, P=0.1; versus infarct=304 kPa, P=0.01). Conclusions— We demonstrate restoration and normalization of post–myocardial infarction ventricular biomechanics after therapy with an angiogenic tissue-engineered EPC construct.
Journal of Applied Physiology | 2011
William Hiesinger; Sergei A. Vinogradov; Pavan Atluri; J. Raymond Fitzpatrick; John R. Frederick; Rebecca D. Levit; Ryan C. McCormick; Jeffrey R. Muenzer; Elaine C. Yang; Nicole A. Marotta; John W. MacArthur; David F. Wilson; Y. Joseph Woo
This study evaluates a therapy for infarct modulation and acute myocardial rescue and utilizes a novel technique to measure local myocardial oxygenation in vivo. Bone marrow-derived endothelial progenitor cells (EPCs) were targeted to the heart with peri-infarct intramyocardial injection of the potent EPC chemokine stromal cell-derived factor 1α (SDF). Myocardial oxygen pressure was assessed using a noninvasive, real-time optical technique for measuring oxygen pressures within microvasculature based on the oxygen-dependent quenching of the phosphorescence of Oxyphor G3. Myocardial infarction was induced in male Wistar rats (n = 15) through left anterior descending coronary artery ligation. At the time of infarction, animals were randomized into two groups: saline control (n = 8) and treatment with SDF (n = 7). After 48 h, the animals underwent repeat thoracotomy and 20 μl of the phosphor Oxyphor G3 was injected into three areas (peri-infarct myocardium, myocardial scar, and remote left hindlimb muscle). Measurements of the oxygen distribution within the tissue were then made in vivo by applying the end of a light guide to the beating heart. Compared with controls, animals in the SDF group exhibited a significantly decreased percentage of hypoxic (defined as oxygen pressure ≤ 15.0 Torr) peri-infarct myocardium (9.7 ± 6.7% vs. 21.8 ± 11.9%, P = 0.017). The peak oxygen pressures in the peri-infarct region of the animals in the SDF group were significantly higher than the saline controls (39.5 ± 36.7 vs. 9.2 ± 8.6 Torr, P = 0.02). This strategy for targeting EPCs to vulnerable peri-infarct myocardium via the potent chemokine SDF-1α significantly decreased the degree of hypoxia in peri-infarct myocardium as measured in vivo by phosphorescence quenching. This effect could potentially mitigate the vicious cycle of myocyte death, myocardial fibrosis, progressive ventricular dilatation, and eventual heart failure seen after acute myocardial infarction.
The Annals of Thoracic Surgery | 2012
John R. Frederick; Y. Joseph Woo
Transaortic replacement of the mitral valve at the time of aortic valve or root replacement is a rarely used technique that offers many possible advantages in the setting of multivalve replacement. Reports in the literature are few and dated. The purpose of this brief communication is to describe technical and procedural details specific to mitral procedures done through the aortic annulus.