Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Garbe is active.

Publication


Featured researches published by John R. Garbe.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Efficient nonmeiotic allele introgression in livestock using custom endonucleases

Wenfang Tan; Daniel F. Carlson; Cheryl A. Lancto; John R. Garbe; Dennis A. Webster; Perry B. Hackett; Scott C. Fahrenkrug

Significance Selective breeding has long been practiced to enrich for desirable DNA variation that influences livestock traits. We demonstrate that genetic variants can be directly introgressed into livestock genomes using a modified transcription activator-like effector nuclease system. The transient exposure of livestock cells to sequence-targeted editors stimulates homology-directed repair to levels that eliminate the need for transgene-dependent selection. Use of oligonucleotide template enables efficient single nucleotide changes to the genome and permits the transmission of both natural and novel DNA sequence variants into naïve livestock breeds and species. Gene editing offers a powerful method for accelerating the genetic improvement of livestock for food and also for developing swine as a resource for regenerative medicine and models of human disease. We have expanded the livestock gene editing toolbox to include transcription activator-like (TAL) effector nuclease (TALEN)- and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-stimulated homology-directed repair (HDR) using plasmid, rAAV, and oligonucleotide templates. Toward the genetic dehorning of dairy cattle, we introgressed a bovine POLLED allele into horned bull fibroblasts. Single nucleotide alterations or small indels were introduced into 14 additional genes in pig, goat, and cattle fibroblasts using TALEN mRNA and oligonucleotide transfection with efficiencies of 10–50% in populations. Several of the chosen edits mimic naturally occurring performance-enhancing or disease- resistance alleles, including alteration of single base pairs. Up to 70% of the fibroblast colonies propagated without selection harbored the intended edits, of which more than one-half were homozygous. Edited fibroblasts were used to generate pigs with knockout alleles in the DAZL and APC genes to model infertility and colon cancer. Our methods enable unprecedented meiosis-free intraspecific and interspecific introgression of select alleles in livestock for agricultural and biomedical applications.


BioMed Research International | 2010

Development and application of bovine and porcine oligonucleotide arrays with protein-based annotation.

John R. Garbe; Christine G. Elsik; Eric Antoniou; James M. Reecy; Karl J. Clark; Anand Venkatraman; JaeWoo Kim; Robert D. Schnabel; C. Michael Dickens; Russell D. Wolfinger; Scott C. Fahrenkrug; Jeremy F. Taylor

The design of oligonucleotide sequences for the detection of gene expression in species with disparate volumes of genome and EST sequence information has been broadly studied. However, a congruous strategy has yet to emerge to allow the design of sensitive and specific gene expression detection probes. This study explores the use of a phylogenomic approach to align transcribed sequences to vertebrate protein sequences for the detection of gene families to design genomewide 70-mer oligonucleotide probe sequences for bovine and porcine. The bovine array contains 23,580 probes that target the transcripts of 16,341 genes, about 72% of the total number of bovine genes. The porcine array contains 19,980 probes targeting 15,204 genes, about 76% of the genes in the Ensembl annotation of the pig genome. An initial experiment using the bovine array demonstrates the specificity and sensitivity of the array.


Nature Biotechnology | 2016

Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies

Daryl M. Gohl; Pajau Vangay; John R. Garbe; Allison MacLean; Adam Hauge; Aaron Becker; Trevor J. Gould; Jonathan B. Clayton; Timothy J. Johnson; Ryan C. Hunter; Dan Knights; Kenneth B. Beckman

Amplicon-based marker gene surveys form the basis of most microbiome and other microbial community studies. Such PCR-based methods have multiple steps, each of which is susceptible to error and bias. Variance in results has also arisen through the use of multiple methods of next-generation sequencing (NGS) amplicon library preparation. Here we formally characterized errors and biases by comparing different methods of amplicon-based NGS library preparation. Using mock community standards, we analyzed the amplification process to reveal insights into sources of experimental error and bias in amplicon-based microbial community and microbiome experiments. We present a method that improves on the current best practices and enables the detection of taxonomic groups that often go undetected with existing methods.


BMC Bioinformatics | 2008

Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies

Li Ma; H. Birali Runesha; Daniel Dvorkin; John R. Garbe; Yang Da

BackgroundGenome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS.ResultsThe EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements.ConclusionThe EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware.


Transgenic Research | 2011

Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system

Daniel F. Carlson; John R. Garbe; Wenfang Tan; Mike J. Martin; John R. Dobrinsky; Perry B. Hackett; Karl J. Clark; Scott C. Fahrenkrug

Swine transgenesis by pronuclear injection or cloning has traditionally relied on illegitimate recombination of DNA into the pig genome. This often results in animals containing concatemeric arrays of transgenes that complicate characterization and can impair long-term transgene stability and expression. This is inconsistent with regulatory guidance for transgenic livestock, which also discourages the use of selection markers, particularly antibiotic resistance genes. We demonstrate that the Sleeping Beauty (SB) transposon system effectively delivers monomeric, multi-copy transgenes to the pig embryo genome by pronuclear injection without markers, as well as to donor cells for founder generation by cloning. Here we show that our method of transposon-mediated transgenesis yielded 38 cloned founder pigs that altogether harbored 100 integrants for five distinct transposons encoding either human APOBEC3G or YFP-Cre. Two strategies were employed to facilitate elimination of antibiotic genes from transgenic pigs, one based on Cre-recombinase and the other by segregation of independently transposed transgenes upon breeding.


Transgenic Research | 2011

Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition

Daniel F. Carlson; Aron M. Geurts; John R. Garbe; ChangWon Park; Artur Rangel-Filho; Scott M. O’Grady; Howard J. Jacob; Clifford J. Steer; David A. Largaespada; Scott C. Fahrenkrug

Heightened interest in relevant models for human disease increases the need for improved methods for germline transgenesis. We describe a significant improvement in the creation of transgenic laboratory mice and rats by chemical modification of Sleeping Beauty transposons. Germline transgenesis in mice and rats was significantly enhanced by in vitro cytosine-phosphodiester-guanine methylation of transposons prior to injection. Heritability of transgene alleles was also greater from founder mice generated with methylated versus non-methylated transposon. The artificial methylation was reprogrammed in the early embryo, leading to founders that express the transgenes. We also noted differences in transgene insertion number and structure (single-insert versus concatemer) based on the influence of methylation and plasmid conformation (linear versus supercoiled), with supercoiled substrate resulting in efficient transpositional transgenesis (TnT) with near elimination of concatemer insertion. Combined, these substrate modifications resulted in increases in both the frequency of transgenic founders and the number of transgenes per founder, significantly elevating the number of potential transgenic lines. Given its simplicity, versatility and high efficiency, TnT with enhanced Sleeping Beauty components represents a compelling non-viral approach to modifying the mammalian germline.


BMC Proceedings | 2007

Genome-wide analysis of single-locus and epistasis single-nucleotide polymorphism effects on anti-cyclic citrullinated peptide as a measure of rheumatoid arthritis

Li Ma; Daniel Dvorkin; John R. Garbe; Yang Da

The goal of this study was to identify single-locus and epistasis effects of SNP markers on anti-cyclic citrullinated peptide (anti-CCP) that is associated with rheumatoid arthritis, using the North American Rheumatoid Arthritis Consortium data. A square root transformation of the phenotypic values of anti-CCP with sex, smoking status, and a selected subset of 20 single-nucleotide polymorphism (SNP) markers in the model achieved residual normality (p > 0.05). Three single-locus effects of two SNPs were significant (p < 10-4). The epistasis analysis tested five effects of each pair of SNPs, the two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance effects. A total of ten epistasis effects of eight pairs of SNPs on 11 autosomes and the X chromosome had significant epistasis effects (p < 10-7). Three of these epistasis effects reached significance levels of p < 10-8, p < 10-9, and p < 10-10, respectively. Two potential SNP epistasis networks were identified. The results indicate that the genetic factors underlying anti-CCP may include single-gene action and gene interactions and that the gene-interaction mechanism underlying anti-CCP could be a complex mechanism involving pairwise epistasis effects and multiple SNPs.


Journal of Animal Science | 2010

Differential gene expression of ewes varying in tolerance to dietary nitrate.

R. R. Cockrum; Kathy J. Austin; JaeWoo Kim; John R. Garbe; Scott C. Fahrenkrug; Jeremy F. Taylor; K. M. Cammack

Ruminants consuming diets with increased concentrations of nitrate (NO(3)(-)) can accumulate nitrite (NO(2)(-)) in the blood, resulting in toxicity. In a previous experiment, ewes identified as highly tolerant to subacute dietary NO(3)(-) were able to consume greater amounts of NO(3)(-) than lowly tolerant ewes without exhibiting signs of toxicity. We hypothesized that highly tolerant and lowly tolerant ewes differ in their ability to metabolize NO(3)(-) and thereby differ in the expression of hepatic genes involved in NO(3)(-) metabolism. Therefore, our objective was to identify hepatic genes differentially expressed between ewes classified as lowly tolerant and highly tolerant after administration of a subacute quantity of dietary NO(3)(-). Analysis of the Bovine Oligonucleotide Microarray data identified 100 oligonucleotides as differentially expressed (P < 0.05) between lowly tolerant and highly tolerant ewes. Functional analysis of the genes associated with these oligonucleotides revealed 2 response clusters of interest: metabolic and stress. Genes of interest within these 2 clusters (n = 17) and nonclustered genes with the greatest fold changes (FC; n = 5) were selected for validation by real-time reverse-transcription PCR. Relative expression, genomic regulation, and FC agreed between microarray and real-time reverse-transcription-PCR analyses, and FC differences (P < 0.05) between lowly tolerant and highly tolerant ewes were confirmed for 12 genes. Metabolic genes that were downregulated (P ≤ 0.032) in lowly tolerant ewes vs. highly tolerant ewes included aldehyde oxidase 1, argininosuccinate lyase, putative steroid dehydrogenase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase1, and sterol carrier protein 2. In contrast, the metabolic gene homeobox was upregulated (P = 0.037) in lowly tolerant ewes. The glutathione peroxidase 3 and inter-α (globulin) inhibitor H4 genes in the stress response cluster were upregulated (P ≤ 0.045) in lowly tolerant ewes. Genes with the greatest FC, but did not cluster within the functional analysis included haptoglobin, which was upregulated (P = 0.024) in lowly tolerant ewes, and fatty acid desaturase 2 and thyroid hormone responsive, both of which were downregulated (P ≤ 0.019) in lowly tolerant ewes. Results from this study indicate that hepatic gene expression differs in ewes identified as lowly tolerant and highly tolerant to increased dietary NO(3)(-).


PLOS ONE | 2016

Genomic Inbreeding and Relatedness in Wild Panda Populations.

John R. Garbe; Dzianis Prakapenka; Cheng Tan; Yang Da

Inbreeding and relatedness in wild panda populations are important parameters for panda conservation. Habitat loss and fragmentation are expected to increase inbreeding but the actual inbreeding levels in natural panda habitats were unknown. Using 150,025 SNPs and 14,926 SNPs selected from published whole-genome sequences, we estimated genomic inbreeding coefficients and relatedness of 49 pandas including 34 wild pandas sampled from six habitats. Qinling and Liangshan pandas had the highest levels of inbreeding and relatedness measured by genomic inbreeding and coancestry coefficients, whereas the inbreeding levels in Qionglai and Minshan were 28–45% of those in Qinling and Liangshan. Genomic coancestry coefficients between pandas from different habitats showed that panda populations from the four largest habitats, Minshan, Qionglai, Qinling and Liangshan, were genetically unrelated. Pandas between these four habitats on average shared 66.0–69.1% common alleles and 45.6–48.6% common genotypes, whereas pandas within each habitat shared 71.8–77.0% common alleles and 51.7–60.4% common genotypes. Pandas in the smaller populations of Qinling and Liangshan were more similarly to each other than pandas in the larger populations of Qionglai and Minshan according to three genomic similarity measures. Panda genetic differentiation between these habitats was positively related to their geographical distances. Most pandas separated by 200 kilometers or more shared no common ancestral alleles. The results provided a genomic quantification of the actual levels of inbreeding and relatedness among pandas in their natural habitats, provided genomic confirmation of the relationship between genetic diversity and geographical distances, and provided genomic evidence to the urgency of habitat protection.


bioRxiv | 2017

EditR: A novel base editing quantification software using Sanger sequencing

Mitchell T Kluesner; Derek Nedveck; Walker S. Lahr; John R. Garbe; Juan E. Abrahante; Beau R. Webber; Branden S. Moriarity

CRISPR/Cas9-Cytidine deaminase fusion enzymes - termed Base Editors – allow targeted editing of genomic deoxcytidine to deoxthymidine (C→T) without the need for double stranded break induction. Base editors represent a paradigm-shift in gene editing technology, due to their unprecedented efficiency to mediate targeted, single-base conversion; however, current analysis of base editing outcomes rely on methods that are either imprecise or expensive and time consuming. To overcome these limitations, we developed a simple, cost effective, and accurate program to measure base editing efficiency from fluorescence-based Sanger sequencing, termed EditR. We provide EditR as a free online tool or downloadable desktop application requiring a single Sanger sequencing file and guide RNA sequence (baseeditr.com). EditR is more accurate than enzymatic assays, and provides added insight to the position, type and efficiency of base editing. Collectively, we demonstrate that EditR is a robust, inexpensive tool that will facilitate the broad application of base editing technology, thereby fostering further innovation in this burgeoning field.

Collaboration


Dive into the John R. Garbe's collaboration.

Top Co-Authors

Avatar

Yang Da

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Xu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad A. Bryan

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge