Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Grider is active.

Publication


Featured researches published by John R. Grider.


Gastroenterology | 1998

5-Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine.

John R. Grider; Amy E. Foxx-Orenstein; Ji-Guang Jin

BACKGROUND & AIMS The peristaltic reflex induced by mucosal stimuli is mediated by intrinsic sensory calcitonin gene-related peptide (CGRP) neurons activated by 5-hydroxytryptamine (5-HT) released from enterochromaffin cells. The involvement of 5-HT4 receptors was examined with selective 5-HT4 agonists. METHODS Compartmented intestinal segments were used to measure neurotransmitter release and the mechanical components of the reflex. RESULTS In human jejunal and rat and guinea pig colonic segments, addition of the 5-HT4 agonist HTF 919 elicited release of CGRP only into the compartment where the 5-HT4 agonist was added; vasoactive intestinal peptide (VIP) was released only into the compartment where descending relaxation was measured, and substance P (SP) was released only into the compartment where ascending contraction was measured. The CGRP antagonist hCGRP8-37 inhibited both mechanical responses by 75%-80%. Release of CGRP, VIP, and SP as well as ascending and descending responses were inhibited by selective 5-HT4 but not by selective 5-HT3 antagonists. Similar results were obtained with a different 5-HT4 agonist, R093877. However, HTF 919 was 10-30 times more potent (median effective concentration, approximately 10 nmol/L for peptide release and 5 nmol/L for mechanical responses) than R093877. CONCLUSIONS Selective 5-HT4 agonists applied to the mucosa in nanomolar concentrations trigger the peristaltic reflex in human, rat, and guinea pig intestine.


Neuron | 1999

Gene Targeting Reveals a Critical Role for Neurturin in the Development and Maintenance of Enteric, Sensory, and Parasympathetic Neurons

Robert O. Heuckeroth; Hideki Enomoto; John R. Grider; Judith P. Golden; Julie A Hanke; Alana Jackman; Derek C. Molliver; Mark E. Bardgett; William D. Snider; Eugene M. Johnson; Jeffrey Milbrandt

Neurturin (NTN) is a neuronal survival factor that activates the Ret tyrosine kinase in the presence of a GPI-linked coreceptor (either GFR alpha1 or GFR alpha2). Neurturin-deficient (NTN-/-) mice generated by homologous recombination are viable and fertile but have defects in the enteric nervous system, including reduced myenteric plexus innervation density and reduced gastrointestinal motility. Parasympathetic innervation of the lacrimal and submandibular salivary gland is dramatically reduced in NTN-/- mice, indicating that Neurturin is a neurotrophic factor for parasympathetic neurons. GFR alpha2-expressing cells in the trigeminal and dorsal root ganglia are also depleted in NTN-/- mice. The loss of GFR alpha2-expressing neurons, in conjunction with earlier studies, provides strong support for GFR alpha2/Ret receptor complexes as the critical mediators of NTN function in vivo.


Development | 2003

GDNF availability determines enteric neuron number by controlling precursor proliferation

Scott M. Gianino; John R. Grider; Jennifer Cresswell; Hideki Enomoto; Robert O. Heuckeroth

To clarify the role of Ret signaling components in enteric nervous system (ENS) development, we evaluated ENS anatomy and intestinal contractility in mice heterozygous for Ret, GFRα1 and Ret ligands. These analyses demonstrate that glial cell line-derived neurotrophic factor (GDNF) and neurturin are important for different aspects of ENS development. Neurturin is essential for maintaining the size of mature enteric neurons and the extent of neuronal projections, but does not influence enteric neuron number. GDNF availability determines enteric neuron number by controlling ENS precursor proliferation. However, we were unable to find evidence of programmed cell death in the wild type ENS by immunohistochemistry for activated caspase 3. In addition, enteric neuron number is normal in Bax–/– and Bid–/– mice, suggesting that, in contrast to most of the rest of the nervous system, programmed cell death is not important for determining enteric neuron numbers. Only mild reductions in neuron size and neuronal fiber counts occur in Ret+/– and Gfra1+/– mice. All of these heterozygous mice, however, have striking problems with intestinal contractility and neurotransmitter release, demonstrating that Ret signaling is critical for both ENS structure and function.


Neurogastroenterology and Motility | 2004

Enteric motor and interneuronal circuits controlling motility.

Joel C. Bornstein; M. Costa; John R. Grider

The enteric nervous system regulates intestinal motility. It contains intrinsic sensory neurones, several types of interneurones and excitatory and inhibitory motor neurones. This review summarizes our knowledge of motor neurones and interneurones in simple motility reflex pathways (ascending and descending excitation, descending inhibition) and it focuses on guinea‐pig ileum. Excitatory circular muscle motor neurones contain choline acetyltransferase (ChAT) and tachykinins and project orally 0.5–10 mm. They transmit via muscarinic acetylcholine receptors and tachykinins acting at NK1 and NK2 receptors. Inhibitory circular muscle motor neurones contain nitric oxide synthase (NOS), vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase activating peptide (PACAP), project anally up to 25 mm and transmit via ATP, nitric oxide and/or VIP. Ascending interneurones project up to 10 mm orally and contain ChAT and tachykinins. They transmit to each other via ACh at nicotinic receptors (nAChR), but to excitatory motor neurones via both nAChR and NK3 receptors. There are at least three types of descending interneurones and one transmits to inhibitory motor neurones via ATP acting at P2X receptors. NOS‐containing descending interneurones receive input via P2Y receptors from other interneurones. Transmission to and from the other descending interneurones (ChAT/5‐HT, ChAT/somatostatin) is yet to be characterized.


Biochemical Journal | 2003

Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation via Rho-associated kinase/myosin phosphatase targeting subunit 1 and protein kinase C/CPI-17 pathway

Karnam S. Murthy; Huiping Zhou; John R. Grider; David L. Brautigan; Masumi Eto; Gabriel M. Makhlouf

Signalling via m3 and m2 receptors in smooth muscles involved activation of two G-protein-dependent pathways by each receptor. m2 receptors were coupled via Gbetagammai3 with activation of phospholipase C-beta3, phosphoinositide 3-kinase and Cdc42/Rac1 (where Cdc stands for cell division cycle) and p21-activated kinase 1 (PAK1), resulting in phosphorylation and inactivation of myosin light chain kinase (MLCK). Each step was inhibited by methoctramine and pertussis toxin. PAK1 activity was abolished in cells expressing both Cdc42-DN (where DN stands for dominant negative) and Rac1-DN. MLCK phosphorylation was inhibited by PAK1 antibody, and in cells expressing Cdc42-DN and Rac1-DN. m3 receptors were coupled via Galpha(q/11) with activation of phospholipase C-beta1 and via RhoA with activation of Rho-associated kinase (Rho kinase), phospholipase D and protein kinase C (PKC). Rho kinase and phospholipase D activities were inhibited by C3 exoenzyme and in cells expressing RhoA-DN. PKC activity was inhibited by bisindolylmaleimide, and in cells expressing RhoA-DN; PKC activity was also inhibited partly by Y27632 (44+/-5%). PKC-induced phosphorylation of PKC-activated 17 kDa inhibitor protein of type 1 phosphatase (CPI-17) at Thr38 was abolished by bisindolylmaleimide and inhibited partly by Y27632 (28+/-3%). Rho-kinase-induced phosphorylation of myosin phosphatase targeting subunit (MYPT1) and was abolished by Y27632. Sustained phosphorylation of 20 kDa regulatory light chain of myosin II (MLC20) and contraction were abolished by bisindolylmaleimide Y27632 and C3 exoenzyme and in cells expressing RhoA-DN. The results suggest that Rho-kinase-dependent phosphorylation of MYPT1 and PKC-dependent phosphorylation and enhancement of CPI-17 binding to the catalytic subunit of MLC phosphatase (MLCP) act co-operatively to inhibit MLCP activity, leading to sustained stimulation of MLC20 phosphorylation and contraction. Because Y27632 inhibited both Rho kinase and PKC activities, it could not be used to ascertain the contribution of MYPT1 to inhibition of MLCP activity. m2-dependent phosphorylation and inactivation of MLCK precluded its involvement in sustained MLC20 phosphorylation and contraction.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1998

Expression of endothelial nitric oxide synthase in human and rabbit gastrointestinal smooth muscle cells

B.-Q. Teng; Karnam S. Murthy; John F. Kuemmerle; John R. Grider; Kazuhiro Sase; Thomas Michel; Gabriel M. Makhlouf

The aim of this study was to identify the nitric oxide synthase (NOS) isoform expressed in freshly dispersed rabbit gastric smooth muscle cells and in cultured rabbit gastric, human intestinal, and guinea pig taenia coli smooth muscle cells. RT-PCR products of the predicted size (354 bp) were obtained with endothelial NOS (eNOS)-specific primers, but not neuronal NOS (nNOS)- or inducible NOS (iNOS)-specific primers, in all smooth muscle preparations except guinea pig taenia coli. Control RT-PCR studies showed absence of the endothelial markers, platelet endothelial cell adhesion molecule-1 (PECAM-1) and vascular endothelial growth factor receptor (VEGFR), and the interstitial cell marker, c- kit, from cultures of smooth muscle cells. Cloning and sequence analysis showed that the predicted amino acid sequence (117 residues) in rabbit and human smooth muscle cells differed by only one residue from that of human eNOS. Northern blot analysis, using the PCR-generated and cloned eNOS cDNA from rabbits and humans as probes, demonstrated the expression of eNOS mRNA (4.4 kb) in both species. eNOS, but not nNOS or iNOS, transcripts were localized by in situ RT-PCR in single, freshly dispersed rabbit gastric smooth muscle cells; expression was evident in the majority of cells in each preparation. We conclude that eNOS is selectively expressed in rabbit gastric and human intestinal smooth muscle cells. The results confirm functional evidence for the existence of a constitutive NOS in smooth muscle cells of the gut in different species, except for guinea pig taenia coli.The aim of this study was to identify the nitric oxide synthase (NOS) isoform expressed in freshly dispersed rabbit gastric smooth muscle cells and in cultured rabbit gastric, human intestinal, and guinea pig taenia coli smooth muscle cells. RT-PCR products of the predicted size (354 bp) were obtained with endothelial NOS (eNOS)-specific primers, but not neuronal NOS (nNOS)- or inducible NOS (iNOS)-specific primers, in all smooth muscle preparations except guinea pig taenia coli. Control RT-PCR studies showed absence of the endothelial markers, platelet endothelial cell adhesion molecule-1 (PECAM-1) and vascular endothelial growth factor receptor (VEGFR), and the interstitial cell marker, c-kit, from cultures of smooth muscle cells. Cloning and sequence analysis showed that the predicted amino acid sequence (117 residues) in rabbit and human smooth muscle cells differed by only one residue from that of human eNOS. Northern blot analysis, using the PCR-generated and cloned eNOS cDNA from rabbits and humans as probes, demonstrated the expression of eNOS mRNA (4.4 kb) in both species. eNOS, but not nNOS or iNOS, transcripts were localized by in situ RT-PCR in single, freshly dispersed rabbit gastric smooth muscle cells; expression was evident in the majority of cells in each preparation. We conclude that eNOS is selectively expressed in rabbit gastric and human intestinal smooth muscle cells. The results confirm functional evidence for the existence of a constitutive NOS in smooth muscle cells of the gut in different species, except for guinea pig taenia coli.


Gastroenterology | 1989

Identification of neurotransmitters regulating intestinal peristaltic reflex in humans

John R. Grider

The components of the intestinal peristaltic reflex in humans were examined and the neurotransmitters responsible for them identified for the first time i isolated flat sheet segments of intestine. Increasing radial stretch to the caudad end elicited increasing ascending contraction only, whereas increasing radial stretch to the orad end elicited increasing descending relaxation only. Both components were abolished by hexamethonium, implying the participation of cholinergic interneurons in each component. Atropine inhibited ascending contraction only, abolishing the response to low grades of stretch and partially inhibiting the response to high grades of stretch (69% +/- 17%, p less than 0.01). The substance P antagonist [D-Pro2, D-Trp7,9] substance P partially inhibited ascending contraction induced by high grades of stretch only (40% +/- 12%, p less than 0.02). The vasoactive intestinal peptide antagonist [4-Cl-D-Phe6, Leu17]vasoactive intestinal peptide inhibited descending relaxation, abolishing the response to low grades of stretch and partially inhibiting the response to high grades of stretch (40% +/- 4%, p less than 0.001). Release of vasoactive intestinal peptide increased significantly by 91% during descending relaxation only, whereas release of both substance P and substance K increased significantly by 107% during ascending contraction only, supporting the participation of vasoactive intestinal peptide motor neurons in descending relaxation and tachykinin motor neurons as well as cholinergic motor neurons in ascending contraction. The components of the human peristaltic reflex and transmitters regulating them were identical to those found in rat and guinea pig intestine.


Gastroenterology | 2013

The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice

Farzad Alemi; Daniel P. Poole; Jonathon V. Chiu; Kristina Schoonjans; Fiore Cattaruzza; John R. Grider; Nigel W. Bunnett; Carlos U. Corvera

BACKGROUND & AIMS Abnormal delivery of bile acids (BAs) to the colon as a result of disease or therapy causes constipation or diarrhea by unknown mechanisms. The G protein-coupled BA receptor TGR5 (or GPBAR1) is expressed by enteric neurons and endocrine cells, which regulate motility and secretion. METHODS We analyzed gastrointestinal and colon transit, as well as defecation frequency and water content, in wild-type, knockout, and transgenic mice (trg5-wt, tgr5-ko, and tgr5-tg, respectively). We analyzed colon tissues for contractility, peristalsis, and transmitter release. RESULTS Deoxycholic acid inhibited contractility of colonic longitudinal muscle from tgr5-wt but not tgr5-ko mice. Application of deoxycholic acid, lithocholic acid, or oleanolic acid (a selective agonist of TGR5) to the mucosa of tgr5-wt mice caused oral contraction and caudal relaxation, indicating peristalsis. BAs stimulated release of the peristaltic transmitters 5-hydroxytryptamine and calcitonin gene-related peptide; antagonists of these transmitters suppressed BA-induced peristalsis, consistent with localization of TGR5 to enterochromaffin cells and intrinsic primary afferent neurons. tgr5-ko mice did not undergo peristalsis or transmitter release in response to BAs. Mechanically induced peristalsis and transmitter release were not affected by deletion of tgr5. Whole-gut transit was 1.4-fold slower in tgr5-ko than tgr5-wt or tgr5-tg mice, whereas colonic transit was 2.2-fold faster in tgr5-tg mice. Defecation frequency was reduced 2.6-fold in tgr5-ko and increased 1.4-fold in tgr5-tg mice compared with tgr5-wt mice. Water content in stool was lower (37%) in tgr5-ko than tgr5-tg (58%) or tgr5-wt mice (62%). CONCLUSIONS The receptor TGR5 mediates the effects of BAs on colonic motility, and deficiency of TGR5 causes constipation in mice. These findings might mediate the long-known laxative properties of BAs, and TGR5 might be a therapeutic target for digestive diseases.


The Journal of Neuroscience | 2010

The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function.

Hongtao Wang; Inna Hughes; William Planer; Alexander Parsadanian; John R. Grider; Bhupinder P.S. Vohra; Cynthia R. Keller-Peck; Robert O. Heuckeroth

Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.


Journal of Pharmacology and Experimental Therapeutics | 2011

Inhibition of Monoacylglycerol Lipase Attenuates Nonsteroidal Anti-Inflammatory Drug-Induced Gastric Hemorrhages in Mice

Steven G. Kinsey; Daniel K. Nomura; Scott T. O'Neal; Jonathan Z. Long; Anu Mahadevan; Benjamin F. Cravatt; John R. Grider; Aron H. Lichtman

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used analgesics, but can cause gastric and esophageal hemorrhages, erosion, and ulceration. The endogenous cannabinoid (endocannabinoid; eCB) system possesses several potential targets to reduce gastric inflammatory states, including cannabinoid receptor type 1 (CB1), cannabinoid receptor type 2 (CB2), and enzymes that regulate the eCB ligands 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (anandamide; AEA). In the presented study, we tested whether 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), a selective inhibitor of the primary catabolic enzyme of 2-AG, monoacylglycerol lipase (MAGL), would protect against NSAID-induced gastric damage. Food-deprived mice administered the nonselective cyclooxygenase inhibitor diclofenac sodium displayed gastric hemorrhages and increases in proinflammatory cytokines. JZL184, the proton pump inhibitor omeprazole (positive control), or the primary constituent of marijuana, Δ9-tetrahydrocannabinol (THC), significantly prevented diclofenac-induced gastric hemorrhages. JZL184 also increased stomach levels of 2-AG, but had no effect on AEA, arachidonic acid, or the prostaglandins E2 and D2. MAGL inhibition fully blocked diclofenac-induced increases in gastric levels of proinflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor α, and granulocyte colony-stimulating factor, as well as IL-10. Pharmacological inhibition or genetic deletion of CB1 or CB2 revealed that the gastroprotective effects of JZL184 and THC were mediated via CB1. The antihemorrhagic effects of JZL184 persisted with repeated administration, indicating a lack of tolerance. These data indicate that increasing 2-AG protects against gastric damage induced by NSAIDs, and its primary catabolic enzyme MAGL offers a promising target for the development of analgesic therapeutics possessing gastroprotective properties.

Collaboration


Dive into the John R. Grider's collaboration.

Top Co-Authors

Avatar

Karnam S. Murthy

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Sunila Mahavadi

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. Kuemmerle

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Li-Ya Qiao

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Divya P. Kumar

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Derek M. Kendig

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Ancy D. Nalli

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Hamid I. Akbarali

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Othman Al-Shboul

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge