John R. Horsley
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John R. Horsley.
Journal of the American Chemical Society | 2014
John R. Horsley; Jingxian Yu; Katherine E. Moore; Joseph G. Shapter; Andrew D. Abell
Electrochemical studies are reported on a series of peptides constrained into either a 310-helix (1–6) or β-strand (7–9) conformation, with variable numbers of electron rich alkene containing side chains. Peptides (1 and 2) and (7 and 8) are further constrained into these geometries with a suitable side chain tether introduced by ring closing metathesis (RCM). Peptides 1, 4 and 5, each containing a single alkene side chain reveal a direct link between backbone rigidity and electron transfer, in isolation from any effects due to the electronic properties of the electron rich side-chains. Further studies on the linear peptides 3–6 confirm the ability of the alkene to facilitate electron transfer through the peptide. A comparison of the electrochemical data for the unsaturated tethered peptides (1 and 7) and saturated tethered peptides (2 and 8) reveals an interplay between backbone rigidity and effects arising from the electron rich alkene side-chains on electron transfer. Theoretical calculations on β-strand models analogous to 7, 8 and 9 provide further insights into the relative roles of backbone rigidity and electron rich side-chains on intramolecular electron transfer. Furthermore, electron population analysis confirms the role of the alkene as a “stepping stone” for electron transfer. These findings provide a new approach for fine-tuning the electronic properties of peptides by controlling backbone rigidity, and through the inclusion of electron rich side-chains. This allows for manipulation of energy barriers and hence conductance in peptides, a crucial step in the design and fabrication of molecular-based electronic devices.
Chemical Communications | 2014
Jingxian Yu; John R. Horsley; Katherine E. Moore; Joseph G. Shapter; Andrew D. Abell
Two helical peptides, one constrained by a covalent side-chain staple, exhibit vastly different electronic properties despite adopting essentially the same backbone conformation. High level calculations confirm that these differences are due to the additional backbone rigidity imparted by the macrocyclic constraint.
Australian Journal of Chemistry | 2013
Jingxian Yu; John R. Horsley; Andrew D. Abell
A series of synthetic peptides containing 0–5 α-aminoisobutyric acid (Aib) residues and a C-terminal redox-active ferrocene was synthesised and their conformations defined by NMR and circular dichroism. Each peptide was separately attached to an electrode for subsequent electrochemical analysis in order to investigate the effect of peptide chain length (distance dependence) and secondary structure on the mechanism of intramolecular electron transfer. While the shorter peptides (0–2 residues) do not adopt a well defined secondary structure, the longer peptides (3–5 residues) adopt a helical conformation, with associated intramolecular hydrogen bonding. The electrochemical results on these peptides clearly revealed a transition in the mechanism of intramolecular electron transfer on transitioning from the ill-defined shorter peptides to the longer helical peptides. The helical structures undergo electron transfer via a hopping mechanism, while the shorter ill-defined structures proceeded via an electron superexchange mechanism. Computational studies on two β-peptides PCB-(β3Val-β3Ala-β3Leu)n–NHC(CH3)2OOtBu (n = 1 and 2; PCB = p-cyanobenzamide) were consistent with these observations, where the n = 2 peptide adopts a helical conformation and the n = 1 peptide an ill-defined structure. These combined studies suggest that the mechanism of electron transfer is defined by the extent of secondary structure, rather than merely chain length as is commonly accepted.
Chemistry: A European Journal | 2015
John R. Horsley; Jingxian Yu; Andrew D. Abell
Understanding the electronic properties of single peptides is not only of fundamental importance, but it is also paramount to the realization of peptide-based molecular electronic components. Electrochemical and theoretical studies are reported on two β-strand-based peptides, one with its backbone constrained with a triazole-containing tether introduced by Huisgen cycloaddition (peptide 1) and the other a direct linear analogue (peptide 2). Density functional theory (DFT) and non-equilibrium Greens function were used to investigate conductance in molecular junctions containing peptides 3 and 4 (analogues of 1 and 2). Although the peptides share a common β-strand conformation, they display vastly different electronic transport properties due to the presence (or absence) of the side-bridge constraint and the associated effect on backbone rigidity. These studies reveal that the electron transfer rate constants of 1 and 2, and the conductance calculated for 3 and 4, differ by approximately one order of magnitude, thus providing two distinctly different conductance states and what is essentially a molecular switch. A definitive correlation of electrochemical measurements and molecular junction conductance simulations is demonstrated using two different charge transfer techniques. This study furthers our understanding of the electronic properties of peptides at the molecular level, which provides an opportunity to fine-tune their molecular orbital energies through suitable structural manipulation.
Molecular Systems Design & Engineering | 2017
Jingxian Yu; John R. Horsley; Andrew D. Abell
Electron transfer in peptides provides an opportunity to mimic nature for applications in bio-inspired molecular electronics. However, quantum interference effects, which become significant at the molecular level, have yet to be addressed in this context. Electrochemical and theoretical studies are reported on a series of cyclic and linear peptides of both β-strand and helical conformation, to address this shortfall and further realize the potential of peptides in molecular electronics. The introduction of a side-bridge into the peptides provides both additional rigidity to the backbone, and an alternative pathway for electron transport. Electronic transport studies reveal an interplay between quantum interference and vibrational fluctuations. We utilize these findings to demonstrate two distinctive peptide-based quantum interferometers, one exploiting the tunable effects of quantum interference (β-strand) and the other regulating the interplay between the two phenomena (310-helix).
ChemBioChem | 2018
Andrew D. Abell; Jingxian Yu; Steven W. Polyak; John R. Horsley; Yuan Qi Yeoh
Gramicidin S is a naturally occurring antimicrobial cyclic peptide. Herein, we present a series of cyclic peptides based on gramicidin S that contain an azobenzene photoswitch to reversibly control secondary structure and, hence, antimicrobial activity. 1H NMR spectroscopy and density functional theory calculations revealed a β‐sheet/β‐turn secondary structure for the cis configuration of each peptide, and an ill‐defined conformation for all associated trans structures. The cis‐enriched and trans‐enriched photostationary states (PSSs) for peptides 1–3 were assayed against Staphylococcus aureus to reveal a clear relationship between well‐defined secondary structure, amphiphilicity and optimal antimicrobial activity. Most notably, peptides 2 a and 2 b exhibited a fourfold difference in antimicrobial activity in the cis‐enriched PSS over the trans‐enriched equivalent. This photopharmacological approach allows antimicrobial activity to be regulated through photochemical control of the azobenzene photoswitch, thereby opening new avenues in the design and synthesis of future antibiotics.
Biosensors and Bioelectronics | 2018
John R. Horsley; Jingxian Yu; Kate L. Wegener; Christian Hoppmann; Karola Rück-Braun; Andrew D. Abell
Neuronal nitric oxide synthase (nNOS) is an enzyme responsible for catalyzing the production of the crucial cellular signalling molecule, nitric oxide (NO), through its interaction with the PDZ domain of α-syntrophin protein. In this study, a novel light-driven photoswitchable peptide-based biosensor, modelled on the nNOS β-finger, is used to detect and control its interaction with α-syntrophin. An azobenzene photoswitch incorporated into the peptide backbone allows reversible switching between a trans photostationary state devoid of secondary structure, and a cis photostationary state possessing a well-defined antiparallel β-strand geometry, as revealed by molecular modelling. Electrochemical impedance spectroscopy (EIS) is used to successfully detect the interaction between the gold electrode bound peptide in its cis photostationary state and a wide range of concentrations of α-syntrophin protein, highlighting both the qualitative and quantitative properties of the sensor. Furthermore, EIS demonstrates that the probe in its random trans photostationary state does not bind to the target protein. The effectiveness of the biosensor is further endorsed by the high thermal stability of the photostationary state of the cis-isomer, and the ability to actively control biomolecular interactions using light. This approach allows detection and control of binding to yield a regenerable on-off biosensor.
RSC Advances | 2017
Jingxian Yu; John R. Horsley; Andrew D. Abell
Understanding the electronic properties inherent to peptides is crucial for controlling charge transfer, and precursory to the design and fabrication of bio-inspired next generation electronic components. However, to achieve this objective one must first be able to predict and control the associated charge transfer mechanisms. Here we demonstrate for the first time a controllable mechanistic transition in peptides resulting directly from the introduction of a side-bridge. High level computational studies on two similar 310-helical hexapeptides, one further constrained into this geometry by linking the i to i + 3 residues with a lactam side-bridge, highlight the effects of the bridge on electron transfer parameters, i.e. thermodynamic driving forces, reorganization energies, and electronic coupling factors. The additional backbone rigidity imparted by the bridge significantly alters the molecular dynamics of the peptide to such an extent as to induce a mechanistic transition from hopping in the linear peptide, to superexchange in the constrained peptide. This exciting finding not only advances our fundamental knowledge of the mechanisms governing charge transfer in peptides, but also reveals novel approaches to design and develop new functional devices that are tailored for applications in molecular electronics.
Archive | 2017
John R. Horsley; Jingxian Yu; Yuan Qi Yeoh; Andrew D. Abell
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Electrochimica Acta | 2016
Jingxian Yu; John R. Horsley; Andrew D. Abell