John R. Jarvis
University of Westminster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John R. Jarvis.
Vision Research | 2002
John R. Jarvis; Nina R Taylor; N. B. Prescott; Ian Meeks; Christopher M. Wathes
The photopic flicker sensitivity of the chicken was determined using an operant conditioning psychophysical technique. The results show both high- and low-frequency fall-off in the sensitivity response, which peaked around 15 Hz. Flicker sensitivity was determined for a range of stimulus luminance levels, and directly compared to human flicker response measured under similar stimulus conditions. At five luminance levels (10, 100, 200, 500 and 1000 cd/m(2)), the overall chicken flicker sensitivity was found to be considerably lower than for humans, except at high frequencies. A greater degree of frequency tuning was also found in the chicken response. The critical flicker fusion values were either similar or slightly higher for chickens compared to humans (40.8, 50.4, 53.3, 58.2 and 57.4 Hz vs 39.2, 54.0, 54.0, 57.4 and 71.5 Hz respectively for humans and chickens for increasing stimulus luminance level). A recently proposed model for flicker sensitivity [Vision Research 39 (1999) 533], which incorporates low- and high-pass temporal filters in cascade, was found to be applicable to the chicken response. From this model, deductions were made concerning mechanisms controlling the transfer of temporal information.
Vision Research | 2002
John L. Barbur; N. B. Prescott; R. H. Douglas; John R. Jarvis; Christopher M. Wathes
Pupil responses triggered by specific stimulus attributes such as spatial structure, colour and light flux changes were measured in eight domestic fowl. Comparative experiments were also carried out in human subjects. The results were unexpected in that large increments in light flux caused only small constrictions of the pupil. A red stimulus, on the other hand, caused a relatively large pupil response, but a green stimulus was less effective. This finding suggests that the size of the pupil, apart from being controlled by well-described pretectal pathways that mediate luminance responses, is also subject to other inputs. The pupil response in the domestic fowl may therefore make an effective quantitative indicator of things of significance to the animal. In some ways these observations are similar to other findings in primates in that the processing of stimulus attributes such as colour and structure that are not normally associated with the light reflex pathway can cause a pupil response. The fowl pupil does however respond very fast when large light flux changes or red stimuli are involved. Results obtained with sinusoidally modulated light flux changes reveal a short response latency of 105 ms (SD=8.3). In contrast, human responses measured for similar stimulus conditions reveal a latency of 434 ms (SD=36). The speed of pupil response in the fowl is significantly higher than in humans, but the response amplitude is usually small. Another interesting observation is the lack of sustained response to changes in ambient illumination. These findings suggest that the input to the pupilloconstrictor neurones in the fowl consists largely of transient neurones with little sustained component.
Vision Research | 2009
John R. Jarvis; Siobhan M. Abeyesinghe; Claire E. McMahon; Christopher M. Wathes
The spatial contrast sensitivity (CSF) of the chicken has been measured using a behavioural technique. The results obtained show that spatial vision in this species is relatively poor compared with the human observer. For a visual stimulus luminance of 16 c dm(-2), the upper frequency limit of spatial vision in the chicken (acuity) was found to be about 7.0 c deg(-1), with peak spatial vision occurring at around 1.0 c deg(-1). Under equivalent stimulus conditions, the acuity of the human is around 50 c deg(-1) with a peak in spatial vision at about 3.0 c deg(-1). Peak spatial contrast sensitivity in the chicken was also found to be only about 2% that for the human. At a lower stimulus luminance of 0.1 c dm(-2), the chicken CSF reduced in overall magnitude and indicated an acuity level of about 5.0 c deg(-1). These experimental results were successfully modelled using modulation transfer (MTF) theory. This theoretical treatment enabled important neural mechanisms underlying spatial vision in the chicken to be revealed. The role played by spatial vision in the chickens ability to recognise detailed shapes in its visual environment was also examined by deploying the CSF as a visual weighting function with the Fourier series of a chicken comb.
Vision Research | 2009
Nick Gover; John R. Jarvis; Siobhan M. Abeyesinghe; Christopher M. Wathes
The luminance dependence of spatial acuity in domestic fowl was measured directly over stimulus luminances ranging from 0.06 to 57.35 cd m(-2). At the highest luminance, acuity was around 6.5 c deg(-1), in agreement with previous studies in this species. As stimulus luminance decreased, acuity fell with increasing rate to 3.2 c deg(-1) at 0.06 cd m(-2), following the same shape as acuity functions for other mammalian and avian species. These findings suggest that the rod-cone transition for domestic fowl is between 0.45 and 1.79 cd m(-2). Over the photopic range from 1.79 to 57.35 cd m(-2) the change of acuity for fowl was 1%, compared with 32% for humans. For domestic fowl, the Rovamo-Barten MTF model of contrast sensitivity accounted for the behaviour of acuity as a function of luminance down to mesopic levels.
Animal | 2008
John E. Saunders; John R. Jarvis; Christopher M. Wathes
This paper considers whether photometric calculations using standard human spectral sensitivity data are satisfactory for applications with other species or whether it would be worthwhile to use bespoke spectral sensitivity functions for each species or group of species. Applications include the lighting of interior areas and the design of photometers. Published spectral sensitivity data for a number of domesticated animals (human, turkey, duck, chicken, cat, rat and mouse) were used to calculate lighting levels for each species and compared with those derived from standard CIE human photopic and scotopic functions. Calculations were made for spectral power distributions of daylight, incandescent light and 12 fluorescent sources commonly used to light interiors. The calculated lighting levels showed clear differences between species and the standard human. Assuming that the resulting effects on retinal illuminance determine the overall perception of the level of light, there may be applications where these differences are important. However, evidence is also presented that the magnitude of these inter-species effects are similar to, or smaller than, those arising from other optical, physiological and psychological factors, which are also likely to influence the resulting perception. It is also important to recognise that lighting-related parameters such as the good colour rendering of surfaces, the avoidance of glare from lamps and other factors that may be species related are sometimes of greater importance than the lighting levels. Our results suggest that a judicial choice of three spectral sensitivity functions would satisfy most circumstances. Firstly, where the overall sensitivity is maximal in the medium to long wavelengths, the standard CIE photopic function will suffice, chicken, turkey and duck fall in this category. Secondly, in a small number of cases where the sensitivity centres on the short to medium wavelengths, the CIE scotopic function should be used, e.g. for the scotopic cat, photopic rat and photopic mouse. Finally, where an animal is also sensitive to the UV region of the spectrum and there is a significant component of UV radiation, then an additional measure of the UV response should be included, as for the photopic rat and photopic mouse.
British Poultry Science | 2006
C. L. Barber; N. B. Prescott; John R. Jarvis; C. Le Sueur; G. C. Perry; Christopher M. Wathes
1. The photopic spectral sensitivity of domestic ducks and turkeys was determined using an operant psychophysical technique. Spectral sensitivity was determined over a range of specified wavelengths, including UVA, between 326 < λ < 694 nm and the results were directly compared with human spectral sensitivity measured under similar experimental conditions. 2. Domestic ducks and turkeys had similar spectral sensitivities to each other, and could perceive UVA radiation, although turkeys were more sensitive to UVA than ducks. For both species, peak sensitivity was between 544 < λ < 577 nm, with reduced sensitivity at λ = 508 and 600 nm. Both ducks and turkeys had a very different and broader range of spectral sensitivity than the human subjects tested. 3. Spectral sensitivity and UVA perception in these avian species are discussed in relation to their visual ecology and the mechanisms controlling neural processing of colour information.
Vision Research | 2007
John R. Jarvis; Christopher M. Wathes
A novel technique for calculating the visual optical modulation transfer function (OMTF) is described. The technique involves application of the Rovamo-Barten model of spatial vision to measured contrast sensitivity data. [For details of the basic model see; Rovamo, J., Mustonen, J., & Nasanen, R. (1994). Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Research, 34, 1301-1314 and Barten, P. J. G. (1999). Contrast sensitivity of the human eye and its effects on image quality. Washington: SPIE Optical Engineering Press.] In order to obtain OMTF, the model was simplified for use in the high spatial frequency range and also modified to include a transfer function term relating to attenuation by the retinal receptor sampling process. Calculations of OMTF were initially obtained from published contrast sensitivity for the human, cat, rat and chicken. The results were found to correlate well with OMTF values directly obtained through a double-pass optical measuring technique applied to all four species. It was assumed, following this initial test, that the modified Rovamo-Barten model could be used to extract OMTF from vertebrate contrast sensitivity data in general. Using published behavioural contrast sensitivity, further OMTF values were calculated from the model for the pigeon, goldfish, owl monkey, and tree shrew. The results obtained were used to provide a direct inter-species comparison of optical performance for a matched stimulus luminance. This study also confirms that, in many cases, vertebrate optical and receptor sampling processes are well matched in their attenuation properties.
Vision Research | 2008
John R. Jarvis; Christopher M. Wathes
The validity of the Rovamo-Barten modulation transfer function model for describing spatial contrast sensitivity in vertebrates was examined using published data for the human, macaque, cat, goldfish, pigeon and rat. Under photopic conditions, the model adequately described overall contrast sensitivity for changes in both stimulus luminance and stimulus size for each member of this diverse range of species. From this examination, optical, retinal and post-retinal neural processes subserving contrast sensitivity were quantified. An important retinal process is lateral inhibition and values of its associated point spread function (PSF) were obtained for each species. Some auxiliary contrast sensitivity data obtained from the owl monkey were included for these calculations. Modeled values of the lateral inhibition PSF were found to correlate well with ganglion cell receptive field surround size measurements obtained directly from electrophysiology. The range of vertebrates studied was then further extended to include the squirrel monkey, tree shrew, rabbit, chicken and eagle. To a first approximation, modeled estimates of lateral inhibition PSF width were found to be inversely proportional to the square root of ganglion cell density. This finding is consistent with a receptive field surround diameter that changes in direct proportion to the distance between ganglion cells for central vision. For the main species examined, contrast sensitivity is considerably less than that for the human. Although this is due in part to a reduction in the performance of both optical and retinal mechanisms, the model indicates that poor cortical detection efficiency plays a significant role.
Proceedings of SPIE | 2014
Sophie Triantaphillidou; John R. Jarvis; Gaurav Gupta
This paper describes continuing research concerned with the measurement and modeling of human spatial contrast sensitivity and discrimination functions, using complex pictorial stimuli. The relevance of such functions in image quality modeling is also reviewed. Previously1,2 we presented the choice of suitable contrast metrics, apparatus and laboratory set-up, the stimuli acquisition and manipulation, the methodology employed in the subjective tests and initial findings. Here we present our experimental paradigm, the measurement and modeling of the following visual response functions: i) Isolated Contrast Sensitivity Function (iCSF); Contextual Contrast Sensitivity Function (cCSF); Isolated Visual Perception Function (iVPF); Contextual Visual Perception Function (cVPF). Results indicate that the measured cCSFs are lower in magnitude than the iCSFs and flatter in profile. Measured iVPFs, cVPFs and cCSFs are shown to have similar profiles. Barten’s contrast detection model3 was shown to successfully predict iCSF. For a given frequency band, the reduction, or masking of cCSF compared with iCSF sensitivity is predicted from the linear amplification model (LAM)4. We also show that our extension of Barten’s contrast discrimination model1,5 is capable of describing iVPFs and cVPFs. We finally reflect on the possible implications of the measured and modeled profiles of cCSF and cVPF to image quality modeling.
Visual Neuroscience | 2012
John R. Jarvis; Christopher M. Wathes
The validity of the Barten theoretical model for describing the vertebrate spatial contrast sensitivity function (CSF) and acuity at scotopic light levels has been examined. Although this model (which has its basis in signal modulation transfer theory) can successfully describe vertebrate CSF, and its relation to underlying visual neurophysiology at photopic light levels, significant discrepancies between theory and experimental data have been found at scotopic levels. It is shown that in order to describe scotopic CSF, the theory must be modified to account for important mechanistic changes, which occur as cone vision switches to rod vision. These changes are divided into photon management factors [changes in optical performance (for a dilated pupil), quantum efficiency, receptor sampling] and neural factors (changes in spatial integration area, neural noise, and lateral inhibition in the retina). Predictions of both scotopic CSF and acuity obtained from the modified theory were found to be in good agreement with experimental values obtained from the human, macaque, cat, and owl monkey. The last two species have rod densities particularly suited for scotopic conditions.