Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Scala is active.

Publication


Featured researches published by John R. Scala.


Journal of the Atmospheric Sciences | 1993

Heating, moisture, and water budgets of tropical and midlatitude squall lines : comparisons and sensitivity to longwave radiation

Wei-Kuo Tao; Joanne Simpson; Chung-Hsiung Sui; B. Ferrier; Stephen E. Lang; John R. Scala; Ming-Dah Chou; Kenneth E. Pickering

Abstract A two-dimensional, time-dependent, and nonhydrostatic numerical cloud model is used to estimate the heating (Q1, moisture (Q2), and water budgets in the convective and stratiform regions for a tropical and a midlatitude squall line (EMEX and PRE-STORM). The model is anelastic and includes a parameterized three-class ice-phase microphysical scheme and longwave radiative transfer processes. A quantitative estimate of the impact of the longwave radiative cooling on the total surface precipitation as well as on the development and structure of these two squall lines is presented. It was found that the vertical eddy moisture fluxes are a major contribution to the model-derived Q2 budgets in both squall cases. A distinct midlevel minimum in the Q2 profile for the EMEX case is due to vertical eddy transport in the convective region. On the other hand, the contribution to the Q1 budget by the cloud-scale fluxes is minor for the EMEX case. In contrast, the vertical eddy heat flux is relatively important f...


Journal of Geophysical Research | 1994

Convective transport over the central United States and its role in regional CO and ozone budgets

Anne Thompson; Kenneth E. Pickering; Russell R. Dickerson; William G. Ellis; Daniel J. Jacob; John R. Scala; Wei-Kuo Tao; Donna P. McNamara; Joanne Simpson

We have constructed a regional budget for boundary layer carbon monoxide over the central United States (32.5°–50°N, 90°–105°W), emphasizing a detailed evaluation of deep convective vertical fluxes appropriate for the month of June. Deep convective venting of the boundary layer (upward) dominates other components of the CO budget, e.g., downward convective transport, loss of CO by oxidation, anthropogenic emissions, and CO produced from oxidation of methane, isoprene, and anthropogenic nonmethane hydrocarbons (NMHCs). Calculations of deep convective venting are based on the method of Pickering et al. [1992a] which uses a satellite-derived deep convective cloud climatology along with transport statistics from convective cloud model simulations of observed prototype squall line events. This study uses analyses of convective episodes in 1985 and 1989 and CO measurements taken during several midwestern field campaigns. Deep convective venting of the boundary layer over this moderately polluted region provides a net (upward minus downward) flux of 18.1×108kg CO month−1 to the free troposphere during early summer, assuming the June statistics are typical. Shallow cumulus and synoptic-scale weather systems together make a comparable contribution (total net flux 16.2×108 kg CO month−1). Boundary layer venting of CO with other O3 precursors leads to efficient free tropospheric O3 formation. We estimate that deep convective transport of CO and other precursors over the central United States in early summer leads to a gross production of 0.66–1.1 Gmol O3 d−1 in good agreement with estimates of O3 production from boundary layer venting in a continental-scale model [Jacob et al., 1993a, b]. In this respect the central U.S. region acts as a “chimney” for the country, and presumably this O3 contributes to high background levels of O3 in the eastern United States and O3 export to the North Atlantic.


Journal of Geophysical Research | 2000

A cloud‐scale model study of lightning‐generated NO x in an individual thunderstorm during STERAO‐A

Alex J. DeCaria; Kenneth E. Pickering; Georgiy L. Stenchikov; John R. Scala; Jeffrey L. Stith; James E. Dye; B. A. Ridley; Pierre Laroche

Understanding lightning NOx (NO 1 NO2) production on the cloud scale is key for developing better parameterizations of lightning NOx for use in regional and global chemical transport models. This paper attempts to further the understanding of lightning NOx production on the cloud scale using a cloud model simulation of an observed thunderstorm. Objectives are (1) to infer from the model simulations and in situ measurements the relative production rates of NOx by cloud-to-ground (CG) and intracloud (IC) lightning for the storm; (2) to assess the relative contributions in the storm anvil of convective transport of NOx from the boundary layer and NOx production by lightning; and (3) to simulate the effects of the lightning-generated NOx on subsequent photochemical ozone production. We use a two-dimensional cloud model that includes a parameterized source of lightning-generated NOx to study the production and advection of NOx associated with a developing northeast Colorado thunderstorm observed on July 12, 1996, during the Stratosphere-Troposphere Experiment—Radiation, Aerosols, Ozone (STERAO-A) field campaign. Model results are compared with the sum of NO measurements taken by aircraft and photostationary state estimates of NO2 in and around the anvil of the thunderstorm. The results show that IC lightning was the dominant source of NOx in this thunderstorm. We estimate from our simulations that the NOx production per CG flash (PCG) was of the order of 200 to 500 mol flash 21 .N O x production per IC flash (PIC) appeared to be half or more of that for a CG flash, a higher ratio of P IC/PCG than is commonly assumed. The results also indicate that the majority of NOx (greater than 80%) in the anvil region of this storm resulted from lightning as opposed to transport from the boundary layer. The effect of the lightning NOx on subsequent photochemical ozone production was assessed using a column chemical model initialized with values of NOx ,O 3, and hydrocarbons taken from a horizontally averaged vertical profile through the anvil of the simulated storm. The lightning NOx increased simulated ozone production rates by a maximum of over 7 ppbv d 21 in the upper troposphere downwind of this storm.


Monthly Weather Review | 1994

Amazon Coastal Squall Lines. Part I: Structure and Kinematics

Michael Garstang; Harold L. Massie; Jeffrey B. Halverson; Steven J. Greco; John R. Scala

Abstract Mesoscale to synoptic-scale squall lines that form along the northeastern coast of South America as sea-breeze-induced instability lines and propagate through the Amazon Basin are investigated using data collected during the April–May 1987 Amazon Boundary Layer Experiment (ABLE 2B). These systems, termed “Amazon coastal squall lines” (ACSL), have been noted by others, but details of the structure and evolution of the ACSL are limited. The present paper uses Geostationary Operational Environmental Satellite, radar, upper-air rawinsonde, and surface Portable Automated Mesonet data to describe the structure, dynamics, and life cycle of the ACSL. Twelve ACSL were sampled during ABLE 2B, and three cases are discussed in detail. The ACSL are discontinuous lines of organized mesoscale cloud clusters that propagate across the central Amazon Basin at speeds of 50–60 km h−1. The ACSL undergo six possible life cycle stages: coastal genesis, intensification, maturity, weakening, reintensification, and dissip...


Bulletin of the American Meteorological Society | 1997

Tropical deep convection and ozone formation

Anne M. Thompson; Wei-Kuo Tao; Kenneth E. Pickering; John R. Scala; Joanne Simpson

Abstract Theoretical studies, aircraft, and space-borne measurements show that deep convection can be an effective conduit for introducing reactive surface pollutants into the free troposphere. The chemical consequences of convective systems are complex. For example, sensitivity studies show potential for both enhancement and diminution of ozone formation. Field observations of cloud and mesoscale phenomena have been investigated with the Goddard Cumulus Ensemble and Tropospheric Chemistry models. Case studies from the tropical ABLE 2, STEP, and TRACE-A experiments show that free tropospheric ozone formation should increase when deep convection and urban or biomass burning pollution coincide, and decrease slightly in regions relatively free of ozone precursors (often marine). Confirmation of post-convective ozone enhancement in the free troposphere over Brazil, the Atlantic, and southern Africa was a major accomplishment of the September–October 1992 TRACE-A (Transport and Atmospheric Chemistry near the E...


Journal of Atmospheric Chemistry | 1992

OZONE PRODUCTION POTENTIAL FOLLOWING CONVECTIVE REDISTRIBUTION OF BIOMASS BURNING EMISSIONS

Kenneth E. Pickering; Anne M. Thompson; John R. Scala; Wei-Kuo Tao; Joanne Simpson

The effects of deep convection on the potential for forming ozone (“ozone production potential”) in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud dynamical and photochemical simulations based on observations in 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. The photochemical fate of pollutants actually entrained in a cumulus event of August 1985 during NASA/GTE/ABLE 2A (Case 1) is compared to photochemical ozone production that could have occurred if the same storm had been located closer to regions of savanna burning (Case 2) and forest burning (Case 3). In each case studied, the ozone production potential is calculated for a 24-hour period following convective redistribution of ozone precursors and compared to ozone production in the absence of convection. In all cases there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed NOx, hydrocarbons and CO compared to the case of no convection.In the August 1985 ABLE 2A event, entrainment of a layer polluted with biomass burning into a convective squall line changes the free tropospheric cloud outflow column (5–13 km) ozone production potential from net destruction to net production. If it is assumed that the same cloud dynamics occur directly over regions of savanna burning, ozone production rates in the middle and upper troposphere are much greater. Diurnally averaged ozone production following convection may reach 7 ppbv/day averaged over the layer from 5–13 km-compared to typical free tropospheric concentrations of 25–30 ppbv O3 during nonpolluted conditions in ABLE 2A. Convection over a forested region where isoprene as well as hydrocarbons from combustion can be transported into the free troposphere leads to yet higher amounts of ozone production.


Journal of Geophysical Research | 1996

Stratosphere‐troposphere exchange in a midlatitude mesoscale convective complex: 2. Numerical simulations

Georgiy L. Stenchikov; Russell R. Dickerson; Kenneth E. Pickering; W. Ellis; Bruce G. Doddridge; S. Kondragunta; Olga Poulida; John R. Scala; Wei-Kuo Tao

Mixing across the tropopause due to intense convective events may significantly influence the atmospheric chemical balance. Stratosphere-troposphere exchange acts as an important natural source of O3 in the troposphere, and a source of H2O, HCs, CFCs, HCFCs, and reactive nitrogen in the stratosphere. The redistribution of atmospheric trace gases produces secondary radiative, dynamical and climate effects, influencing lower stratospheric temperatures and the tropopause height. During the 1989 North Dakota Thunderstorm Project, a severe storm which evolved into a mesoscale convective complex (MCC) on June 28–29 showed the unusual feature of an anvil formed well within the stratosphere and produced strong vertical mixing of atmospheric trace gases including H2O, CO, O3 and NOy as discussed by Poulida et al. [this issue] in Part 1 of this paper. In this paper the two-dimensional NASA Goddard Cumulus Ensemble (GCE) model was employed to simulate this convective storm using observed initial and boundary conditions. The sensitivity to the domain size, initial and boundary conditions, stability, and time resolution are evaluated. Synoptic-scale moisture convergence, simulated by moist boundary inflow, influences significantly the storm intensity, spatial structure, and trace gas transport, and produces a storm that reintensifies after the initial decay, mimicking the observed behavior of the MCC. The deformation of the tropopause documented with aircraft observations was qualitatively reproduced along with transport of stratospheric ozone downward into the troposphere, and the transport of trace species from the boundary layer upward into the stratosphere. If the chemistry and dynamics of this storm are typical of the roughly 100 MCCs occurring annually over midlatitudes, then this mechanism plays an important role in CO, NOy, and O3 budgets and could be the dominant source of H2O in the lower stratosphere and upper troposphere over midlatitudes.


Journal of the Atmospheric Sciences | 1995

The Effect of Melting Processes on the Development of a Tropical and a Midlatitude Squall Line

Wei-Kuo Tao; John R. Scala; Brad S. Ferrier; Joanne Simpson

Abstract Several sensitivity tests are performed to assess the effect of melting processes on the development of a midlatitude continental squall line and a tropical oceanic squall line. It is found that melting processes play an important role in the structure of a midlatitude continental squall system. For the maritime tropical case, squall development is not as sensitive to the presence of melting, due to the dominance of warm rain processes. Melting processes exert an influence on midlatitude cloud system development through the conversion of ice particles to rain. The simulated convective system was found to be much weaker in the absence of evaporative cooling by rain. For a given vertical shear of horizontal wind, cooling by evaporation in the convective region was found to be essential for maintaining a long-lived cloud system. Diabatic cooling by melting played only a secondary role in this respect. In the absence of melting processes, the simulated mildlatitude squall system acquired the characte...


Journal of Geophysical Research | 1991

Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A

Kenneth E. Pickering; Anne M. Thompson; John R. Scala; Wei-Kuo Tao; Joanne Simpson; Michael Garstang

We have examined the role of convection in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A)in Amazonia, Brazil. Two types of analyses were performed. (1) Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NOx, CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60% less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. (2) Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NOx was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.


Geophysical Research Letters | 1992

A regional estimate of convective transport of CO from biomass burning

Kenneth E. Pickering; John R. Scala; Anne M. Thompson; Wei-Kuo Tao; Joanne Simpson

We present a regional-scale estimate of the fraction of biomass burning emissions that are transported to the free troposphere by deep convection. The focus is on CO and the study region is a part of Brazil that underwent intensive deforestation in the 1980s. The method of calculation is stepwise, scaling up from a prototype convective event, the dynamics of which are well-characterized, to the vertical mass flux of carbon monoxide over the region. Satellite-derived observations of the area extent of pollution from biomass burning and convective cloud cover are used in the scaling. Given uncertainties in CO emissions from biomass burning and the representativeness of the protoype event, it is estimated that 10–40 percent of CO emissions from the burning region may be rapidly transported to the free troposphere over the burning region. These relatively fresh emissions will produce O3 efficiently in the free troposphere where O3 has a longer lifetime than in the boundary layer.

Collaboration


Dive into the John R. Scala's collaboration.

Top Co-Authors

Avatar

Joanne Simpson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Kuo Tao

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne M. Thompson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Arnold L. Torres

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge