Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Sieber is active.

Publication


Featured researches published by John R. Sieber.


Environmental Science & Technology | 2011

Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy.

Julien Malherbe; Marie-Pierre Isaure; Fabienne Séby; Russell P. Watson; Pablo Rodríguez-González; Paul E. Stutzman; Clay W. Davis; Chiara Maurizio; Nora Unceta; John R. Sieber; Stephen E. Long; Olivier F. X. Donard

Hexavalent chromium (Cr(VI)) occurrence in soils is generally determined using an extraction step to transfer it to the liquid phase where it is more easily detected and quantified. In this work, the performance of the most common extraction procedure (EPA Method 3060A) using NaOH-Na(2)CO(3) solutions is evaluated using X-ray absorption near edge structure spectroscopy (XANES), which enables the quantification of Cr(VI) directly in the solid state. Results obtained with both methods were compared for three solid samples with different matrices: a soil containing chromite ore processing residue (COPR), a loamy soil, and a paint sludge. Results showed that Cr(VI) contents determined by the two methods differ significantly, and that the EPA Method 3060A procedure underestimated the Cr(VI) content in all studied samples. The underestimation is particularly pronounced for COPR. Low extraction yield for EPA Method 3060A was found to be the main reason. The Cr(VI) present in COPR was found to be more concentrated in magnetic phases. This work provides new XANES analyses of SRM 2701 and its extraction residues for the purpose of benchmarking EPA 3060A performance.


Metrologia | 2012

Final report on key comparison CCQM-K55.b (aldrin): An international comparison of mass fraction purity assignment of aldrin

Steven Westwood; Ralf D. Josephs; Tiphaine Choteau; Adeline Daireaux; Charline Mesquida; Robert Wielgosz; Adriana Rosso; Mariana Ruiz de Arechavaleta; Stephen Davies; Hongjie Wang; Eliane Cristina Pires do Rego; Janaína Marques Rodrigues; Evelyn de Freitas Guimarães; Marcus Vinicius Barreto Sousa; Tânia Monteiro; Laura Alves das Neves Valente; Fernando Gustavo Marques Violante; Renato Rubim Ribeiro Almeida; Maria Cristina Baptista Quaresma; Raquel Nogueira; Anthony Windust; Xinhua Dai; Xiaomin Li; Wei Zhang; Ming Li; Mingwu Shao; Chao Wei; Siu-kay Wong; Julie Cabillic; Fanny Gantois

Under the auspices of the Organic Analysis Working Group (OAWG) of the Comit? Consultatif pour la Quantit? de Mati?re (CCQM) a key comparison, CCQM K55.b, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2010/2011. Nineteen national measurement institutes and the BIPM participated. Participants were required to assign the mass fraction of aldrin present as the main component in the comparison sample for CCQM-K55.b which consisted of technical grade aldrin obtained from the National Measurement Institute Australia that had been subject to serial recrystallization and drying prior to sub-division into the units supplied for the comparison. Aldrin was selected to be representative of the performance of a laboratorys measurement capability for the purity assignment of organic compounds of medium structural complexity [molar mass range 300 Da to 500 Da] and low polarity (pKOW < ?2) for which related structure impurities can be quantified by capillary gas phase chromatography (GC). The key comparison reference value (KCRV) for the aldrin content of the material was 950.8 mg/g with a combined standard uncertainty of 0.85 mg/g. The KCRV was assigned by combination of KCRVs assigned by consensus from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 0.3% to 0.6% using a mass balance approach and 0.5% to 1% using a qNMR method. The major analytical challenge posed by the material proved to be the detection and quantification of a significant amount of oligomeric organic material within the sample and most participants relying on a mass balance approach displayed a positive bias relative to the KCRV (overestimation of aldrin content) in excess of 10 mg/g due to not having adequate procedures in place to detect and quantify the non-volatile content?specifically the non-volatile organics content?of the comparison sample. There was in general excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content and the residual solvent content of the sample. The comparison demonstrated the utility of 1H NMR as an independent method for quantitative analysis of high purity compounds. In discussion of the participant results it was noted that while several had access to qNMR estimates for the aldrin content that were inconsistent with their mass balance determination they decided to accept the mass balance result and assumed a hidden bias in their NMR data. By contrast, laboratories that placed greater confidence in their qNMR result were able to resolve the discrepancy through additional studies that provided evidence of the presence of non-volatile organic impurity at the requisite level to bring their mass balance and qNMR estimates into agreement. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).


Metrologia | 2014

Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity

Steven Westwood; Ralf D. Josephs; Tiphaine Choteau; Adeline Daireaux; Robert Wielgosz; Stephen Davies; Michael Moad; Benjamin Chan; Amalia Muñoz; Patrick Conneely; Marina Ricci; Eliane Cristina Pires do Rego; Bruno Garrido; Fernando Gustavo Marques Violante; Anthony Windust; Xinhua Dai; Ting Huang; Wei Zhang; Fuhai Su; Can Quan; Haifeng Wang; Man-fung Lo; Wai-fun Wong; Fanny Gantois; Béatrice Lalerle; Ute Dorgerloh; Matthias Koch; Urszula-Anna Klyk-Seitz; Dietmar Pfeifer; Rosemarie Philipp

Under the auspices of the Organic Analysis Working Group (OAWG) of the Comit? Consultatif pour la Quantit? de Mati?re (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratorys measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100?300] and high polarity (pKOW > ?2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and ?-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).


Journal of Materials Science | 2015

Characterization of clay composite ballistic witness materials

Jonathan E. Seppala; Yoonae Heo; Paul E. Stutzman; John R. Sieber; Chad R. Snyder; Kirk D. Rice; Gale A. Holmes

Mechanical and thermal properties of Roma Plastilina Clay #1 (RP1) were studied through small-amplitude oscillatory shear (SAOS), large-amplitude oscillatory shear (LAOS), and differential scanning calorimetry (DSC), supplemented with thermogravimetric analysis, X-ray diffraction, and X-ray florescence. Rheological characterizations of RP1 through SAOS indicate that the clay composite softens as it is worked and slowly stiffens as it rests. Upon heating, the clay composite softens, prior work history is erased, and the composite undergoes a melting transition, although melted clay is significantly stiffer when returned to the usage temperature. Continuing mechanical characterizations into the LAOS or nonlinear region, RP1 transitions from a transient network to a viscous shear-thinning material as the temperature is increased. Using the MITlaos framework, RP1 exhibits intra-cycle strain stiffening and intra-cycle shear thinning at all temperatures.


Powder Diffraction | 2006

Validation of an Alkali Reaction, Borate Fusion, X-ray Fluorescence Method for Silicon Metal

John R. Sieber; Elizabeth A. Mackey; Anthony F. Marlow; Rick L. Paul; Roger J. Martin

The value assignment of candidate Standard Reference Material (SRM) 57b Silicon Metal provided an opportunity to develop an alkali reaction procedure as a precursor to borate fusion for the preparation of test specimens from the metal powder for X-ray fluorescence spectrometry (XRF). Suggested for this purpose by Blanchette (Adv. X-Ray Anal., 45, 415, 2002), the alkali reaction uses LiOH·H2O to convert Si to Li2SiO3. Lithium silicate is fused with lithium borate flux without damage to platinum ware. Once specimens are fused and cast as beads, calibration standards are prepared to closely match the compositions of the specimens allowing a linear calibration for each analyte. The XRF method yields results that are directly traceable to the mole through NIST SRM spectrometric solutions. The method was validated in two ways. First, the reaction was used on older SRMs for Si metal: SRM 57 and SRM 57a. Second, XRF results for candidate SRM 57b were compared to results obtained using prompt gamma-ray activation analysis (PGAA) and inductively coupled plasma optical emission spectrometry (ICPOES). Bias tests show the XRF results are accurate for the elements Al, S, Ca, Ti, Cr, Mn, Ni, Cu, and Zr. Levels of S, Ca, Cr, and Cu in candidate SRM 57b are near the limits of quantification of the borate fusion method. Iron results may be subject to a low bias. Phosphorus is not quantitatively retained during the alkali reaction and borate fusion. These elements, plus B which cannot be determined after borate fusion, are listed in manufacturing specifications for Si metal.


Analytical Chemistry | 2018

Determination of Hexavalent Chromium Fractions in Plastics Using Laboratory-Based, High-Resolution X-ray Emission Spectroscopy

Evan P. Jahrman; Gerald T. Seidler; John R. Sieber

Cr(VI) is a well-known human carcinogen with many water-soluble moieties. Its presence in both natural and man-made substances poses a risk to public health, especially when contamination of groundwater is possible. This has led the European Union and other jurisdictions to include Cr(VI) in restriction of hazardous substances regulations. However, for several important industrial and commercial purposes, analytical capability to characterize Cr(VI) is known to be insufficient for regulatory purposes. For example, advanced X-ray spectroscopies, particularly synchrotron-based X-ray absorption fine structure (XAFS) studies, have shown that species interconversion and under-extraction can be difficult to prevent in many existing liquid extraction protocols when applied to plastics, mining ores and tailings, and paint sludges. Here, we report that wavelength dispersive X-ray fluorescence spectroscopy taken at energy resolutions close to the theoretical limit imposed by the core-hole lifetime, generally called X-ray emission spectroscopy (XES) in the synchrotron community, can be used in the laboratory setting for noninvasive, analytical characterization of the Cr(VI)/Cr ratio in plastics. The selected samples have been part of ongoing efforts by standards development organizations to create improved Cr(VI) testing protocols, and the present work provides a direct proof-of-principle for the use of such extremely high-resolution laboratory WDXRF as an alternative to liquid extraction methods for regulatory compliance testing of Cr(VI) content. As a practical application of this work, we report a value for the Cr(VI) mass fraction of the new NIST Standard Reference Material 2859 Restricted Elements in Polyvinyl Chloride.


Cement & Concrete Composites | 2017

Measurement and modeling of the ability of crack fillers to prevent chloride ingress into mortar

Scott Z. Jones; Dale P. Bentz; Jeffrey M. Davis; Daniel S. Hussey; David L. Jacobson; John L. Molloy; John R. Sieber

A common repair procedures applied to damaged concrete is to fill cracks with an organic polymer. This operation is performed to increase the service life of the concrete by removing a preferential pathway for the ingress of water, chlorides, and other deleterious species. To effectively fulfill its mission of preventing chloride ingress, the polymer must not only fully fill the macro-crack, but must also intrude the damage zone surrounding the crack perimeter. Here, the performance of two commonly employed crack fillers, one epoxy, and one methacrylate, are investigated using a combined experimental and computer modeling approach. Neutron tomography and microbeam X-ray fluorescence spectrometry (μXRF) measurements are employed on pre-cracked and chloride-exposed specimens to quantify the crack filling and chloride ingress limiting abilities, respectively, of the two polymers. A two-dimensional model of chloride transport is derived from a mass balance and solved by the finite element method. Crack images provided by μXRF are used to generate the input microstructure for the simulations. When chloride binding and a time-dependent mortar diffusivity are both included in the computer model, good agreement with the experimental results is obtained. Both crack fillers significantly reduce chloride ingress during the 21 d period of the present experiments; however, the epoxy itself contains approximately 4 % by mass chlorine. Leaching studies were performed assess the epoxy as a source of deleterious ions for initiating corrosion of the steel reinforcement in concrete structures.


Journal of Applied Physics | 2018

p-type doping efficiency in CdTe: Influence of second phase formation

Jedidiah McCoy; Santosh K. Swain; John R. Sieber; David R. Diercks; Brian P. Gorman; Kelvin G. Lynn

Cadmium telluride (CdTe) high purity, bulk, crystal ingots doped with phosphorus were grown by the vertical Bridgman melt growth technique to understand and improve dopant solubility and activation. Large net carrier densities have been reproducibly obtained from as-grown ingots, indicating successful incorporation of dopants into the lattice. However, net carrier density values are orders of magnitude lower than the solubility of P in CdTe as reported in literature, 1018/cm3 to 1019/cm3 [J. H. Greenberg, J. Cryst. Growth 161, 1-11 (1996) and R. B. Hall and H. H. Woodbury, J. Appl. Phys. 39(12), 5361-5365 (1968)], despite comparable starting charge dopant densities. Growth conditions, such as melt stoichiometry and post growth cooling, are shown to have significant impacts on dopant solubility. This study demonstrates that a significant portion of the dopant becomes incorporated into second phase defects as compounds of cadmium and phosphorous, such as cadmium phosphide, which inhibits dopant incorporation into the lattice and limits maximum attainable net carrier density in bulk crystals. Here, we present an extensive study on the characteristics of these second phase defects in relation to their composition and formation kinetics while providing a pathway to minimize their formation and enhance solubility.


Light Metals (Cham) | 2017

Using Guard Bands to Accommodate Uncertainty in the Spark AES Analysis of Aluminum or Aluminum Alloys When Determining Compliance with Specified Composition Limits

Thomas Belliveau; Denis Choquette; Olivier Gabis; Michael L. Ruschak; John R. Sieber; Albert Wills; Rebecca K. Wyss

Every pound of aluminum or aluminum alloys cast and sold is certified to meet The Aluminum Association Inc. registered limits or other specified composition limits. Certification of aluminum and aluminum alloys to specified composition limits is typically done using Spark-Atomic Emission Spectrometry (Spark-AES) following the procedures in ASTM International (ASTM) E716 Standard Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis and ASTM E1251 Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Spark–AES. Spark-AES laboratories at major aluminum production facilities normally have excellent analytical practices and follow strict quality control protocols to provide the best results possible. However, every measurement has an associated uncertainty and the measurement of composition using Spark-AES is no exception to the rule. This paper provides a brief discussion of: 1. The uncertainty inherent in the elemental analysis of aluminum and aluminum alloys by Spark-AES. 2. The benefits of using guard bands to set internal operating limits, which are offset from specified composition limits. 3. A model of the risk for sale of out-of-specification product based on the analysis uncertainty relative to the specified composition limits. 4. The main sources of uncertainty of Spark-AES and their potential causes.


Analytical and Bioanalytical Chemistry | 2006

Standard Reference Materials® (SRMs) for measurement of inorganic environmental contaminants

Rolf Zeisler; Karen E. Murphy; D. A. Becker; W. Clay Davis; W. Robert Kelly; Stephen E. Long; John R. Sieber

Collaboration


Dive into the John R. Sieber's collaboration.

Top Co-Authors

Avatar

Kirk D. Rice

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Anthony F. Marlow

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

John L. Molloy

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Lee L. Yu

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Stephen E. Long

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Gale A. Holmes

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Karen E. Murphy

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Eun S. Park

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Rolf Zeisler

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Mackey

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge