Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Teijaro is active.

Publication


Featured researches published by John R. Teijaro.


Science | 2013

Persistent LCMV Infection Is Controlled by Blockade of Type I Interferon Signaling

John R. Teijaro; Cherie Ng; Andrew M. Lee; Brian M. Sullivan; Kathleen C. F. Sheehan; Megan J. Welch; Robert D. Schreiber; Juan Carlos de la Torre; Michael B. A. Oldstone

INTERFER(ON)ing Persistence During persistent viral infections, a dysregulated immune response fails to control the infection. Wilson et al. (p. 202) and Teijaro et al. (p. 207; see the Perspective by Odorizzi and Wherry) show this occurs because type I interferons (IFN I), critical for early responses to viral infection, contribute to the altered immunity seen during persistent infection. Antibody blockade of IFN I signaling during chronic lymphocytic choriomeningitis virus (LCMV) in mice resulted in reduced viral titers at later stages of infection, reduced expression of inhibitory immune molecules and prevented the disruptions to secondary lymphoid organs typically observed during persistent infection with LCMV. Whether type I IFNs are also detrimental to persistent viral infection humans, such as HIV and hepatitis C virus, remains to be determined. Blockade of type I interferons leads to better control of persistent lymphocytic choriomeningitis virus infection. [Also see Perspective by Odorizzi and Wherry] During persistent viral infections, chronic immune activation, negative immune regulator expression, an elevated interferon signature, and lymphoid tissue destruction correlate with disease progression. We demonstrated that blockade of type I interferon (IFN-I) signaling using an IFN-I receptor neutralizing antibody reduced immune system activation, decreased expression of negative immune regulatory molecules, and restored lymphoid architecture in mice persistently infected with lymphocytic choriomeningitis virus. IFN-I blockade before and after establishment of persistent virus infection resulted in enhanced virus clearance and was CD4 T cell–dependent. Hence, we demonstrate a direct causal link between IFN-I signaling, immune activation, negative immune regulator expression, lymphoid tissue disorganization, and virus persistence. Our results suggest that therapies targeting IFN-I may help control persistent virus infections.


Cell | 2011

Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection

John R. Teijaro; Kevin B. Walsh; Stuart M. Cahalan; Daniel M. Fremgen; Edward Roberts; Fiona Scott; Esther Martinborough; Robert Peach; Michael B. A. Oldstone; Hugh Rosen

Summary Cytokine storm during viral infection is a prospective predictor of morbidity and mortality, yet the cellular sources remain undefined. Here, using genetic and chemical tools to probe functions of the S1P1 receptor, we elucidate cellular and signaling mechanisms that are important in initiating cytokine storm. Whereas S1P1 receptor is expressed on endothelial cells and lymphocytes within lung tissue, S1P1 agonism suppresses cytokines and innate immune cell recruitment in wild-type and lymphocyte-deficient mice, identifying endothelial cells as central regulators of cytokine storm. Furthermore, our data reveal immune cell infiltration and cytokine production as distinct events that are both orchestrated by endothelial cells. Moreover, we demonstrate that suppression of early innate immune responses through S1P1 signaling results in reduced mortality during infection with a human pathogenic strain of influenza virus. Modulation of endothelium with a specific agonist suggests that diseases in which amplification of cytokine storm is a significant pathological component could be chemically tractable.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus

Kevin B. Walsh; John R. Teijaro; Peter R. Wilker; Anna Jatzek; Daniel M. Fremgen; Subash C. Das; Tokiko Watanabe; Masato Hatta; Kyoko Shinya; M. Suresh; Yoshihiro Kawaoka; Hugh Rosen; Michael B. A. Oldstone

Human pandemic H1N1 2009 influenza virus rapidly infected millions worldwide and was associated with significant mortality. Antiviral drugs that inhibit influenza virus replication are the primary therapy used to diminish disease; however, there are two significant limitations to their effective use: (i) antiviral drugs exert selective pressure on the virus, resulting in the generation of more fit viral progeny that are resistant to treatment; and (ii) antiviral drugs do not directly inhibit immune-mediated pulmonary injury that is a significant component of disease. Here we show that dampening the hosts immune response against influenza virus using an immunomodulatory drug, AAL-R, provides significant protection from mortality (82%) over that of the neuraminidase inhibitor oseltamivir alone (50%). AAL-R combined with oseltamivir provided maximum protection against a lethal challenge of influenza virus (96%). Mechanistically, AAL-R inhibits cellular and cytokine/chemokine responses to limit immunopathologic damage, while maintaining host control of virus replication. With cytokine storm playing a role in the pathogenesis of a wide assortment of viral, bacterial, and immunologic diseases, a therapeutic approach using sphingosine analogs is of particular interest.


Nature Immunology | 2013

MicroRNAs of the miR-17∼92 family are critical regulators of T(FH) differentiation.

Seung Goo Kang; Wen-Hsien Liu; Peiwen Lu; Hyun Yong Jin; Hyung W. Lim; Jovan Shepherd; Daniel M. Fremgen; Eric Verdin; Michael B. A. Oldstone; Hai Qi; John R. Teijaro; Changchun Xiao

Follicular helper T cells (TFH cells) provide critical help to B cells during humoral immune responses. Here we report that mice with T cell–specific deletion of the miR-17∼92 family of microRNAs (miRNAs) had substantially compromised TFH differentiation, germinal-center formation and antibody responses and failed to control chronic viral infection. Conversely, mice with T cell–specific expression of a transgene encoding miR-17∼92 spontaneously accumulated TFH cells and developed a fatal immunopathology. Mechanistically, the miR-17∼92 family controlled the migration of CD4+ T cells into B cell follicles by regulating signaling intensity from the inducible costimulator ICOS and kinase PI(3)K by suppressing expression of the phosphatase PHLPP2. Our findings demonstrate an essential role for the miR-17∼92 family in TFH differentiation and establish PHLPP2 as an important mediator of their function in this process.


PLOS ONE | 2011

PAD4-Mediated Neutrophil Extracellular Trap Formation Is Not Required for Immunity against Influenza Infection

Saskia Hemmers; John R. Teijaro; Sanja Arandjelovic; Kerri A. Mowen

During an inflammatory response, neutrophils migrate to the site of infection where they can kill invading pathogens by phagocytosis, secretion of anti-microbicidal mediators or the release of neutrophil extracellular traps (NETs). NETs are specialized anti-microbial structures comprised of decondensed chromatin decorated with microbicidal agents. Increased amount of NETs have been found in patients suffering from the chronic lung inflammatory disease cystic fibrosis, correlating with increased severity of pulmonary obstruction. Furthermore, acute lung inflammation during influenza A infection is characterized by a massive influx of neutrophils into the lung. The role of NETs during virus-mediated lung inflammation is unknown. Peptidylarginine deiminase 4 (PAD4)-mediated deimination of histone H3 and H4 is required for NET formation. Therefore, we generated a PAD4-deficient mouse strain that has a striking inability to form NETs. These mice were infected with influenza A/WSN, and the disease was monitored at the level of leukocytic lung infiltration, lung pathology, viral replication, weight loss and mortality. PAD4 KO fared comparable to WT mice in all the parameters tested, but they displayed slight but statistically different weight loss kinetics during infection that was not reflected in enhanced survival. Overall, we conclude that PAD4-mediated NET formation is dispensable in a mouse model of influenza A infection.


Journal of Virology | 2010

Memory CD4 T Cells Direct Protective Responses to Influenza Virus in the Lungs through Helper-Independent Mechanisms

John R. Teijaro; David Verhoeven; Carly Page; Damian Turner; Donna L. Farber

ABSTRACT Memory CD4 T cells specific for influenza virus are generated from natural infection and vaccination, persist long-term, and recognize determinants in seasonal and pandemic influenza virus strains. However, the protective potential of these long-lived influenza virus-specific memory CD4 T cells is not clear, including whether CD4 T-cell helper or effector functions are important in secondary antiviral responses. Here we demonstrate that memory CD4 T cells specific for H1N1 influenza virus directed protective responses to influenza virus challenge through intrinsic effector mechanisms, resulting in enhanced viral clearance, recovery from sublethal infection, and full protection from lethal challenge. Mice with influenza virus hemagglutinin (HA)-specific memory CD4 T cells or polyclonal influenza virus-specific memory CD4 T cells exhibited protection from influenza virus challenge that occurred in the presence of CD8-depleting antibodies in B-cell-deficient mice and when CD4 T cells were transferred into lymphocyte-deficient RAG2−/− mice. Moreover, the presence of memory CD4 T cells mobilized enhanced T-cell recruitment and immune responses in the lung. Neutralization of gamma interferon (IFN-γ) production in vivo abrogated memory CD4 T-cell-mediated protection from influenza virus challenge by HA-specific memory T cells and heterosubtypic protection by polyclonal memory CD4 T cells. Our results indicate that memory CD4 T cells can direct enhanced protection from influenza virus infection through mobilization of immune effectors in the lung, independent of their helper functions. These findings have important implications for the generation of universal influenza vaccines by promoting long-lived protective CD4 T-cell responses.


Nature | 2016

Proteome-wide covalent ligand discovery in native biological systems

Keriann M. Backus; Bruno E. Correia; Kenneth M. Lum; Stefano Forli; Benjamin D. Horning; Gonzalo E. González-Páez; Sandip Chatterjee; Bryan R. Lanning; John R. Teijaro; Arthur J. Olson; Dennis W. Wolan; Benjamin F. Cravatt

Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered ‘undruggable’. Fragment-based ligand discovery can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes, including those that can access regions of proteins that are difficult to target through binding affinity alone. Here we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins in human proteomes and cells. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand–protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and -10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems.


Cell Host & Microbe | 2015

Blockade of Interferon Beta, but Not Interferon Alpha, Signaling Controls Persistent Viral Infection

Cherie T. Ng; Brian M. Sullivan; John R. Teijaro; Andrew M. Lee; Megan J. Welch; Stephanie Rice; Kathleen C. F. Sheehan; Robert D. Schreiber; Michael B. A. Oldstone

Although type I interferon (IFN-I) is thought to be beneficial against microbial infections, persistent viral infections are characterized by high interferon signatures suggesting that IFN-I signaling may promote disease pathogenesis. During persistent lymphocytic choriomeningitis virus (LCMV) infection, IFNα and IFNβ are highly induced early after infection, and blocking IFN-I receptor (IFNAR) signaling promotes virus clearance. We assessed the specific roles of IFNβ versus IFNα in controlling LCMV infection. While blockade of IFNβ alone does not alter early viral dissemination, it is important in determining lymphoid structure, lymphocyte migration, and anti-viral T cell responses that lead to accelerated virus clearance, approximating what occurs during attenuation of IFNAR signaling. Comparatively, blockade of IFNα was not associated with improved viral control, but with early dissemination of virus. Thus, despite their use of the same receptor, IFNβ and IFNα have unique and distinguishable biologic functions, with IFNβ being mainly responsible for promoting viral persistence.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection

John R. Teijaro; Kevin B. Walsh; Stephanie Rice; Hugh Rosen; Michael B. A. Oldstone

Significance Cytokine storm plays an essential and commanding role in the clinical outcome and pathogenesis of influenza virus infection. We previously documented that a small molecule that activates sphingosine-1-phosphate-1 receptor (S1P1R) signaling is primarily responsible for blunting cytokine storm to protect the infected host from the consequences of influenza infection. In the present study, we map host innate signaling pathways of cytokine storm and chart where along those pathways the drug is effective. We find that the efficacy of S1P1R agonist in blunting cytokine storm is through global inhibition downstream of myeloid differentiation primary response gene 88 and IFN-β promoter stimulator-1 signaling. During pathogenic influenza virus infection, robust cytokine production (cytokine storm), excessive inflammatory infiltrates, and virus-induced tissue destruction all contribute to morbidity and mortality. Earlier we reported that modulation of sphingosine-1-phosphate-1 receptor (S1P1R) signaling provided a chemically tractable approach for the effective blunting of cytokine storm, leading to the improvement of clinical and survival outcomes. Here, we show that S1P1R agonist treatment suppresses global cytokine amplification. Importantly, S1P1R agonist treatment was able to blunt cytokine/chemokine production and innate immune cell recruitment in the lung independently of endosomal and cytosolic innate sensing pathways. S1P1R signaling suppression of cytokine amplification was independent of multiple innate signaling adaptor pathways for myeloid differentiation primary response gene 88 (MyD88) and IFN-β promoter stimulator-1 signaling, indicating a common pathway inhibition of cytokine storm. We identify the MyD88 adaptor molecule as responsible for the majority of cytokine amplification observed following influenza virus challenge.


Journal of Immunology | 2009

Costimulation Modulation Uncouples Protection from Immunopathology in Memory T Cell Responses to Influenza Virus

John R. Teijaro; Modesta Njau; David Verhoeven; Smita S. Chandran; Steven G. Nadler; Jeffrey D. Hasday; Donna L. Farber

The rapid effector functions and tissue heterogeneity of memory T cells facilitate protective immunity, but they can also promote immunopathology in antiviral immunity, autoimmunity, and transplantation. Modulation of memory T cells is a promising but not yet achieved strategy for inhibiting these deleterious effects. Using an influenza infection model, we demonstrate that memory CD4 T cell-driven secondary responses to influenza challenge result in improved viral clearance yet do not prevent the morbidity associated with viral infection, and they exacerbate cellular recruitment into the lung, compared with primary responses. Inhibiting CD28 costimulation with the approved immunomodulator CTLA4Ig suppressed primary responses in naive mice infected with influenza, but was remarkably curative for memory CD4 T cell-mediated secondary responses to influenza, with reduced immunopathology and enhanced recovery. We demonstrate that CTLA4Ig differentially affects lymphoid and nonlymphoid responses to influenza challenge, inhibiting proliferation and egress of lymphoid naive and memory T cells, while leaving lung-resident memory CD4 T cell responses intact. Our findings reveal the dual nature of memory T cell-mediated secondary responses and suggest costimulation modulation as a novel strategy to optimize antiviral immunity by limiting the memory T cell response to its protective capacities.

Collaboration


Dive into the John R. Teijaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugh Rosen

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kevin B. Walsh

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Donna L. Farber

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Lee

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian M. Sullivan

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Daniel M. Fremgen

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Megan J. Welch

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge