John R. Weir
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John R. Weir.
Science | 2006
Maria Selmer; Christine M. Dunham; Frank V. Murphy; Albert Weixlbaumer; Sabine Petry; Ann C. Kelley; John R. Weir; V. Ramakrishnan
The crystal structure of the bacterial 70S ribosome refined to 2.8 angstrom resolution reveals atomic details of its interactions with messenger RNA (mRNA) and transfer RNA (tRNA). A metal ion stabilizes a kink in the mRNA that demarcates the boundary between A and P sites, which is potentially important to prevent slippage of mRNA. Metal ions also stabilize the intersubunit interface. The interactions of E-site tRNA with the 50S subunit have both similarities and differences compared to those in the archaeal ribosome. The structure also rationalizes much biochemical and genetic data on translation.
Science | 2009
T. Martin Schmeing; Rebecca M. Voorhees; Ann C. Kelley; Yong-Gui Gao; Frank V. Murphy; John R. Weir; V. Ramakrishnan
Ribosomes Caught in Translation To synthesize proteins, the ribosome must select cognate transfer RNAs (tRNAs) based on base-pairing with the messenger RNA (mRNA) template (a process known as decoding), form a peptide bond, and then move the mRNA:tRNA assembly relative to the ribosome (a process known as translocation). Decoding and translocation require protein guanosine triphosphatases (GTPases), and, while high-resolution structures of the ribosome have greatly furthered our understanding of ribosome function, the detailed mechanism of these GTPases during the elongation cycle remains unclear. Two Research Articles now give a clearer view of these steps in bacterial protein synthesis (see the Perspective by Liljas). Schmeing et al. (p. 688, published online 15 October) present the crystal structure of the ribosome bound to Elongation factor-Tu (EF-Tu) and amino-acyl tRNA that gives insight into how EF-Tu contributes to accurate decoding. Gao et al. (p. 694, published online 15 October) describe the crystal structure of the ribosome bound to Elongation factor-G (EF-G) trapped in a posttranslocation state by the antibiotic fusidic acid that gives insight into how EF-G functions in translocation. Crystal structures of the ribosome bound to elongation factors provide insights into translocation and decoding. The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu.
The EMBO Journal | 2009
Jan-Christian Jan-Christian Schuette; Frank V. Murphy; Ann C. Kelley; John R. Weir; Jan Giesebrecht; Sean R. Connell; Justus Loerke; Thorsten Mielke; Wei Zhang; Pawel A. Penczek; V. Ramakrishnan; Christian M. T. Spahn
We have used single‐particle reconstruction in cryo‐electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF‐Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF‐Tu, but before the release of EF‐Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 Å. Secondary structure elements in tRNA, EF‐Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF‐Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF‐Tu.
eLife | 2013
Ivana Primorac; John R. Weir; Elena Chiroli; Fridolin Gross; Ingrid Hoffmann; Suzan van Gerwen; Andrea Ciliberto; Andrea Musacchio
Regulation of macromolecular interactions by phosphorylation is crucial in signaling networks. In the spindle assembly checkpoint (SAC), which enables errorless chromosome segregation, phosphorylation promotes recruitment of SAC proteins to tensionless kinetochores. The SAC kinase Mps1 phosphorylates multiple Met-Glu-Leu-Thr (MELT) motifs on the kinetochore subunit Spc105/Knl1. The phosphorylated MELT motifs (MELTP) then promote recruitment of downstream signaling components. How MELTP motifs are recognized is unclear. In this study, we report that Bub3, a 7-bladed β-propeller, is the MELTP reader. It contains an exceptionally well-conserved interface that docks the MELTP sequence on the side of the β-propeller in a previously unknown binding mode. Mutations targeting the Bub3 interface prevent kinetochore recruitment of the SAC kinase Bub1. Crucially, they also cause a checkpoint defect, showing that recognition of phosphorylated targets by Bub3 is required for checkpoint signaling. Our data provide the first detailed mechanistic insight into how phosphorylation promotes recruitment of checkpoint proteins to kinetochores. DOI: http://dx.doi.org/10.7554/eLife.01030.001
Proceedings of the National Academy of Sciences of the United States of America | 2010
John R. Weir; Fabien Bonneau; Jendrik Hentschel; Elena Conti
Mtr4 is a conserved RNA helicase that functions together with the nuclear exosome. It participates in the processing of structured RNAs, including the maturation of 5.8S ribosomal RNA (rRNA). It also interacts with the polyadenylating Trf4-Air2 heterodimer to form the so-called TRAMP (Trf4-Air2-Mtr4 Polyadenylation) complex. TRAMP is involved in exosome-mediated degradation of aberrant RNAs in nuclear surveillance pathways. We report the 2.9-Å resolution crystal structure of Saccharomyces cerevisiae Mtr4 in complex with ADP and RNA. The structure shows a central ATPase core similar to that of other DExH helicases. Inserted in the DExH core is a region characteristic of Mtr4 orthologues that folds into an elongated stalk connected to a β-barrel domain. This domain shows unexpected similarity to the KOW domain of L24, a ribosomal protein that binds 23S rRNA. We find that indeed the KOW domain of Mtr4 is able to bind in vitro transcribed tRNAiMet, suggesting it might assist in presenting RNA substrates to the helicase core. The interaction of Mtr4 with Trf4-Air2 is mediated not by the stalk/KOW insertion but by the DExH core. We find that in the context of the TRAMP complex, the DExH core functions independently in vitro as an RNA helicase and a protein-binding platform. Mtr4 has thus evolved specific structural and surface features to perform its multiple functions.
eLife | 2014
Federica Basilico; Stefano Maffini; John R. Weir; Daniel Prumbaum; Ana M. Rojas; Tomasz Zimniak; Anna De Antoni; Sadasivam Jeganathan; Beate Voss; Suzan van Gerwen; Veronica Krenn; Lucia Massimiliano; Alfonso Valencia; Ingrid R. Vetter; Franz Herzog; Stefan Raunser; Andrea Musacchio
Kinetochores, multi-subunit complexes that assemble at the interface with centromeres, bind spindle microtubules to ensure faithful delivery of chromosomes during cell division. The configuration and function of the kinetochore–centromere interface is poorly understood. We report that a protein at this interface, CENP-M, is structurally and evolutionarily related to small GTPases but is incapable of GTP-binding and conformational switching. We show that CENP-M is crucially required for the assembly and stability of a tetramer also comprising CENP-I, CENP-H, and CENP-K, the HIKM complex, which we extensively characterize through a combination of structural, biochemical, and cell biological approaches. A point mutant affecting the CENP-M/CENP-I interaction hampers kinetochore assembly and chromosome alignment and prevents kinetochore recruitment of the CENP-T/W complex, questioning a role of CENP-T/W as founder of an independent axis of kinetochore assembly. Our studies identify a single pathway having CENP-C as founder, and CENP-H/I/K/M and CENP-T/W as CENP-C-dependent followers. DOI: http://dx.doi.org/10.7554/eLife.02978.001
Journal of Cell Biology | 2015
Kerstin Klare; John R. Weir; Federica Basilico; Tomasz Zimniak; Lucia Massimiliano; Nina Ludwigs; Franz Herzog; Andrea Musacchio
CENP-C promotes kinetochore targeting of other constitutive centromere–associated network (CCAN) subunits by directly interacting with the four-subunit CCAN subcomplex CENP-HIKM and spatially organizing the localization of all other CCAN subunits downstream of CENP-A.
Current Opinion in Structural Biology | 2016
Marion E. Pesenti; John R. Weir; Andrea Musacchio
Kinetochores are macromolecular complexes built on a specialized chromatin domain called the centromere. Kinetochores provide a site of attachment for spindle microtubules during mitosis. They also control a cell cycle checkpoint, the spindle assembly checkpoint, which coordinates mitotic exit with the completion of chromosome alignment on the mitotic spindle. Correct kinetochore operation is therefore indispensable for accurate chromosome segregation. With multiple copies of at least 30 structural core subunits and a myriad of regulatory subunits, kinetochores are among the largest known macromolecular machines. Biochemical reconstitution and structural analysis, together with functional studies, are bringing to light the organizational principles of these complex and fascinating structures. We summarize recent work and identify a few challenges for future work.
Nature | 2016
John R. Weir; Alex C. Faesen; Kerstin Klare; Arsen Petrovic; Federica Basilico; Josef Fischböck; Satyakrishna Pentakota; Jenny Keller; Marion E. Pesenti; Dongqing Pan; Doro Vogt; Sabine Wohlgemuth; Franz Herzog; Andrea Musacchio
Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.
PLOS ONE | 2015
Claudia Breit; Tanja Bange; Arsen Petrovic; John R. Weir; Franziska Müller; Doro Vogt; Andrea Musacchio
The spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores to ensure accurate sister chromatid segregation during mitosis. The SAC members Bub1 and BubR1 are paralogs that underwent significant functional specializations during evolution. We report an in-depth characterization of the kinase domains of Bub1 and BubR1. BubR1 kinase domain binds nucleotides but is unable to deliver catalytic activity in vitro. Conversely, Bub1 is an active kinase regulated by intra-molecular phosphorylation at the P+1 loop. The crystal structure of the phosphorylated Bub1 kinase domain illustrates a hitherto unknown conformation of the P+1 loop docked into the active site of the Bub1 kinase. Both Bub1 and BubR1 bind Bub3 constitutively. A hydrodynamic characterization of Bub1:Bub3 and BubR1:Bub3 demonstrates both complexes to have 1:1 stoichiometry, with no additional oligomerization. Conversely, Bub1:Bub3 and BubR1:Bub3 combine to form a heterotetramer. Neither BubR1:Bub3 nor Knl1, the kinetochore receptor of Bub1:Bub3, modulate the kinase activity of Bub1 in vitro, suggesting autonomous regulation of the Bub1 kinase domain. We complement our study with an analysis of the Bub1 substrates. Our results contribute to the mechanistic characterization of a crucial cell cycle checkpoint.