Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Yates is active.

Publication


Featured researches published by John R. Yates.


Journal of the American Society for Mass Spectrometry | 1994

An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database

Jimmy K. Eng; Ashley L. McCormack; John R. Yates

A method to correlate the uninterpreted tandem mass spectra of peptides produced under low energy (10–50 eV) collision conditions with amino acid sequences in the Genpept database has been developed. In this method the protein database is searched to identify linear amino acid sequences within a mass tolerance of ±1 u of the precursor ion molecular weight A cross-correlation function is then used to provide a measurement of similarity between the mass-to-charge ratios for the fragment ions predicted from amino acid sequences obtained from the database and the fragment ions observed in the tandem mass spectrum. In general, a difference greater than 0.1 between the normalized cross-correlation functions of the first- and second-ranked search results indicates a successful match between sequence and spectrum. Searches of species-specific protein databases with tandem mass spectra acquired from peptides obtained from the enzymatically digested total proteins of E. coli and S. cerevisiae cells allowed matching of the spectra to amino acid sequences within proteins of these organisms. The approach described in this manuscript provides a convenient method to interpret tandem mass spectra with known sequences in a protein database.


Nature Biotechnology | 2001

Large-scale analysis of the yeast proteome by multidimensional protein identification technology.

Michael P. Washburn; Dirk Wolters; John R. Yates

We describe a largely unbiased method for rapid and large-scale proteome analysis by multidimensional liquid chromatography, tandem mass spectrometry, and database searching by the SEQUEST algorithm, named multidimensional protein identification technology (MudPIT). MudPIT was applied to the proteome of the Saccharomyces cerevisiae strain BJ5460 grown to mid-log phase and yielded the largest proteome analysis to date. A total of 1,484 proteins were detected and identified. Categorization of these hits demonstrated the ability of this technology to detect and identify proteins rarely seen in proteome analysis, including low-abundance proteins like transcription factors and protein kinases. Furthermore, we identified 131 proteins with three or more predicted transmembrane domains, which allowed us to map the soluble domains of many of the integral membrane proteins. MudPIT is useful for proteome analysis and may be specifically applied to integral membrane proteins to obtain detailed biochemical information on this unwieldy class of proteins.


Nature Biotechnology | 1999

Direct analysis of protein complexes using mass spectrometry

Andrew J. Link; Jimmy K. Eng; David Schieltz; Edwin Carmack; Gregory J. Mize; David R. Morris; Barbara Garvik; John R. Yates

We describe a rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to separate and fragment peptides. The SEQUEST algorithm, relying upon translated genomic sequences, infers amino acid sequences from the fragment ions. The method was applied to the Saccharomyces cerevisiae ribosome leading to the identification of a novel protein component of the yeast and human 40S subunit. By offering the ability to identify >100 proteins in a single run, this process enables components in even the largest macromolecular complexes to be analyzed comprehensively.


Nature | 2003

Wnt proteins are lipid-modified and can act as stem cell growth factors

Karl Willert; Jeffrey Brown; Esther Danenberg; Andrew W. Duncan; Irving L. Weissman; Tannishtha Reya; John R. Yates; Roel Nusse

Wnt signalling is involved in numerous events in animal development, including the proliferation of stem cells and the specification of the neural crest. Wnt proteins are potentially important reagents in expanding specific cell types, but in contrast to other developmental signalling molecules such as hedgehog proteins and the bone morphogenetic proteins, Wnt proteins have never been isolated in an active form. Although Wnt proteins are secreted from cells, secretion is usually inefficient and previous attempts to characterize Wnt proteins have been hampered by their high degree of insolubility. Here we have isolated active Wnt molecules, including the product of the mouse Wnt3a gene. By mass spectrometry, we found the proteins to be palmitoylated on a conserved cysteine. Enzymatic removal of the palmitate or site-directed and natural mutations of the modified cysteine result in loss of activity, and indicate that the lipid is important for signalling. The purified Wnt3a protein induces self-renewal of haematopoietic stem cells, signifying its potential use in tissue engineering.


Cell | 1998

The hMre11/hRad50 Protein Complex and Nijmegen Breakage Syndrome: Linkage of Double-Strand Break Repair to the Cellular DNA Damage Response

James P Carney; Richard S. Maser; Heidi Olivares; Elizabeth M. Davis; Michelle M. Le Beau; John R. Yates; Lara G. Hays; William F. Morgan; John H.J. Petrini

Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by increased cancer incidence, cell cycle checkpoint defects, and ionizing radiation sensitivity. We have isolated the gene encoding p95, a member of the hMre11/hRad50 double-strand break repair complex. The p95 gene mapped to 8q21.3, the region that contains the NBS locus, and p95 was absent from NBS cells established from NBS patients. p95 deficiency in these cells completely abrogates the formation of hMre11/hRad50 ionizing radiation-induced foci. Comparison of the p95 cDNA to the NBS1 cDNA indicated that the p95 gene and NBS1 are identical. The implication of hMre11/hRad50/p95 protein complex in NBS reveals a direct molecular link between DSB repair and cell cycle checkpoint functions.


Nature | 2002

A proteomic view of the Plasmodium falciparum life cycle.

Laurence Florens; Michael P. Washburn; J. Dale Raine; Robert M. Anthony; Munira Grainger; J. David Haynes; J. Kathleen Moch; Nemone Muster; John B. Sacci; David L. Tabb; Adam A. Witney; Dirk Wolters; Yimin Wu; Malcolm J. Gardner; Anthony A. Holder; Robert E. Sinden; John R. Yates; Daniel J. Carucci

The completion of the Plasmodium falciparum clone 3D7 genome provides a basis on which to conduct comparative proteomics studies of this human pathogen. Here, we applied a high-throughput proteomics approach to identify new potential drug and vaccine targets and to better understand the biology of this complex protozoan parasite. We characterized four stages of the parasite life cycle (sporozoites, merozoites, trophozoites and gametocytes) by multidimensional protein identification technology. Functional profiling of over 2,400 proteins agreed with the physiology of each stage. Unexpectedly, the antigenically variant proteins of var and rif genes, defined as molecules on the surface of infected erythrocytes, were also largely expressed in sporozoites. The detection of chromosomal clusters encoding co-expressed proteins suggested a potential mechanism for controlling gene expression.


Cell | 2005

Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription

Michael J. Carrozza; Bing Li; Laurence Florens; Tamaki Suganuma; Selene K. Swanson; Kenneth K. Lee; Wei Jong Shia; Scott Anderson; John R. Yates; Michael P. Washburn; Jerry L. Workman

Yeast Rpd3 histone deacetylase plays an important role at actively transcribed genes. We characterized two distinct Rpd3 complexes, Rpd3L and Rpd3S, by MudPIT analysis. Both complexes shared a three subunit core and Rpd3L contains unique subunits consistent with being a promoter targeted corepressor. Rco1 and Eaf3 were subunits specific to Rpd3S. Mutants of RCO1 and EAF3 exhibited increased acetylation in the FLO8 and STE11 open reading frames (ORFs) and the appearance of aberrant transcripts initiating within the body of these ORFs. Mutants in the RNA polymerase II-associated SET2 histone methyltransferase also displayed these defects. Set2 functioned upstream of Rpd3S and the Eaf3 methyl-histone binding chromodomain was important for recruitment of Rpd3S and for deacetylation within the STE11 ORF. These data indicate that Pol II-associated Set2 methylates H3 providing a transcriptional memory which signals for deacetylation of ORFs by Rpd3S. This erases transcription elongation-associated acetylation to suppress intragenic transcription initiation.


Annual Review of Biomedical Engineering | 2009

Proteomics by Mass Spectrometry: Approaches, Advances, and Applications

John R. Yates; Cristian I. Ruse; Aleksey Nakorchevsky

Mass spectrometry (MS) is the most comprehensive and versatile tool in large-scale proteomics. In this review, we dissect the overall framework of the MS experiment into its key components. We discuss the fundamentals of proteomic analyses as well as recent developments in the areas of separation methods, instrumentation, and overall experimental design. We highlight both the inherent strengths and limitations of protein MS and offer a rough guide for selecting an experimental design based on the goals of the analysis. We emphasize the versatility of the Orbitrap, a novel mass analyzer that features high resolution (up to 150,000), high mass accuracy (2-5 ppm), a mass-to-charge range of 6000, and a dynamic range greater than 10(3). High mass accuracy of the Orbitrap expands the arsenal of the data acquisition and analysis approaches compared with a low-resolution instrument. We discuss various chromatographic techniques, including multidimensional separation and ultra-performance liquid chromatography. Multidimensional protein identification technology (MudPIT) involves a continuum sample preparation, orthogonal separations, and MS and software solutions. We discuss several aspects of MudPIT applications to quantitative phosphoproteomics. MudPIT application to large-scale analysis of phosphoproteins includes (a) a fractionation procedure for motif-specific enrichment of phosphopeptides, (b) development of informatics tools for interrogation and validation of shotgun phosphopeptide data, and (c) in-depth data analysis for simultaneous determination of protein expression and phosphorylation levels, analog to western blot measurements. We illustrate MudPIT application to quantitative phosphoproteomics of the beta adrenergic pathway. We discuss several biological discoveries made via mass spectrometry pipelines with a focus on cell signaling proteomics.


Archive | 2002

Current Protocols in Bioinformatics

Alex Bateman; William R. Pearson; Lincoln Stein; Gary D. Stormo; John R. Yates

1. Please read the rough pages and mark any changes right in the text. 2. If you have large inserts to add, please supply us with a disk and hard copy of the insert(s) and indicate where they should go.


Nature | 2002

Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii

Jane M. Carlton; Samuel V. Angiuoli; Bernard B. Suh; Taco W. A. Kooij; Mihaela Pertea; Joana C. Silva; Maria D. Ermolaeva; Jonathan E. Allen; Jeremy D. Selengut; Hean L. Koo; Jeremy Peterson; Mihai Pop; Daniel S. Kosack; Martin Shumway; Shelby Bidwell; Shamira Shallom; Susan Van Aken; Steven Riedmuller; Tamara Feldblyum; Jennifer Cho; John Quackenbush; Martha Sedegah; Azadeh Shoaibi; Leda M. Cummings; Laurence Florens; John R. Yates; J. Dale Raine; Robert E. Sinden; Michael Harris; Deirdre Cunningham

Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.

Collaboration


Dive into the John R. Yates's collaboration.

Top Co-Authors

Avatar

James J. Moresco

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Xuemei Han

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tao Xu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lujian Liao

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Sarkeshik

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian X. McLeod

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge