Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John S. Cho is active.

Publication


Featured researches published by John S. Cho.


Journal of Clinical Investigation | 2010

IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice

John S. Cho; Eric M. Pietras; Nairy C. Garcia; Romela Irene Ramos; David M. Farzam; Holly R. Monroe; Julie Magorien; Andrew Blauvelt; Jay K. Kolls; Ambrose L. Cheung; Genhong Cheng; Robert L. Modlin; Lloyd S. Miller

Staphylococcus aureus is the most common cause of skin and soft tissue infections, and rapidly emerging antibiotic-resistant strains are creating a serious public health concern. If immune-based therapies are to be an alternative to antibiotics, greater understanding is needed of the protective immune response against S. aureus infection in the skin. Although neutrophil recruitment is required for immunity against S. aureus, a role for T cells has been suggested. Here, we used a mouse model of S. aureus cutaneous infection to investigate the contribution of T cells to host defense. We found that mice deficient in gammadelta but not alphabeta T cells had substantially larger skin lesions with higher bacterial counts and impaired neutrophil recruitment compared with WT mice. This neutrophil recruitment was dependent upon epidermal Vgamma5+ gammadelta T cell production of IL-17, but not IL-21 and IL-22. Furthermore, IL-17 induction required IL-1, TLR2, and IL-23 and was critical for host defense, since IL-17R-deficient mice had a phenotype similar to that of gammadelta T cell-deficient mice. Importantly, gammadelta T cell-deficient mice inoculated with S. aureus and treated with a single dose of recombinant IL-17 had lesion sizes and bacterial counts resembling those of WT mice, demonstrating that IL-17 could restore the impaired immunity in these mice. Our study defines what we believe to be a novel role for IL-17-producing epidermal gammadelta T cells in innate immunity against S. aureus cutaneous infection.


Nature Reviews Immunology | 2011

Immunity against Staphylococcus aureus cutaneous infections

Lloyd S. Miller; John S. Cho

Complications arising from cutaneous and soft tissue infections with Staphylococcus aureus are a major clinical problem owing to the high incidence of these infections and the widespread emergence of antibiotic-resistant bacterial strains. If prophylactic vaccines or immunotherapy for certain patient populations are to be developed as an alternative to antibiotics, it will be essential to better understand the immune mechanisms that provide protection against S. aureus skin infections. Recent discoveries have identified a key role for interleukin-1 (IL-1)- and IL-17-mediated immune responses in promoting neutrophil recruitment to the site of infection in the skin, a process that is required for host defence and bacterial clearance. This Review describes these new insights and discusses their potential impact on immune-based therapies and vaccination strategies.


PLOS Pathogens | 2012

Neutrophil-derived IL-1β Is Sufficient for Abscess Formation in Immunity against Staphylococcus aureus in Mice

John S. Cho; Yi Guo; Romela Irene Ramos; Frank Hebroni; Seema Plaisier; Caiyun Xuan; Jennifer L. Granick; Hironori Matsushima; Akira Takashima; Yoichiro Iwakura; Ambrose L. Cheung; Genhong Cheng; Delphine J. Lee; Scott I. Simon; Lloyd S. Miller

Neutrophil abscess formation is critical in innate immunity against many pathogens. Here, the mechanism of neutrophil abscess formation was investigated using a mouse model of Staphylococcus aureus cutaneous infection. Gene expression analysis and in vivo multispectral noninvasive imaging during the S. aureus infection revealed a strong functional and temporal association between neutrophil recruitment and IL-1β/IL-1R activation. Unexpectedly, neutrophils but not monocytes/macrophages or other MHCII-expressing antigen presenting cells were the predominant source of IL-1β at the site of infection. Furthermore, neutrophil-derived IL-1β was essential for host defense since adoptive transfer of IL-1β-expressing neutrophils was sufficient to restore the impaired neutrophil abscess formation in S. aureus-infected IL-1β-deficient mice. S. aureus-induced IL-1β production by neutrophils required TLR2, NOD2, FPR1 and the ASC/NLRP3 inflammasome in an α-toxin-dependent mechanism. Taken together, IL-1β and neutrophil abscess formation during an infection are functionally, temporally and spatially linked as a consequence of direct IL-1β production by neutrophils.


PLOS ONE | 2010

A Mouse Model of Post-Arthroplasty Staphylococcus aureus Joint Infection to Evaluate In Vivo the Efficacy of Antimicrobial Implant Coatings

Nicholas M. Bernthal; Alexandra I. Stavrakis; Fabrizio Billi; John S. Cho; Thomas J. Kremen; Scott I. Simon; Ambrose L. Cheung; Gerald A. M. Finerman; Jay R. Lieberman; John S. Adams; Lloyd S. Miller

Background Post-arthroplasty infections represent a devastating complication of total joint replacement surgery, resulting in multiple reoperations, prolonged antibiotic use, extended disability and worse clinical outcomes. As the number of arthroplasties in the U.S. will exceed 3.8 million surgeries per year by 2030, the number of post-arthroplasty infections is projected to increase to over 266,000 infections annually. The treatment of these infections will exhaust healthcare resources and dramatically increase medical costs. Methodology/Principal Findings To evaluate novel preventative therapeutic strategies against post-arthroplasty infections, a mouse model was developed in which a bioluminescent Staphylococcus aureus strain was inoculated into a knee joint containing an orthopaedic implant and advanced in vivo imaging was used to measure the bacterial burden in real-time. Mice inoculated with 5×103 and 5×104 CFUs developed increased bacterial counts with marked swelling of the affected leg, consistent with an acute joint infection. In contrast, mice inoculated with 5×102 CFUs developed a low-grade infection, resembling a more chronic infection. Ex vivo bacterial counts highly correlated with in vivo bioluminescence signals and EGFP-neutrophil fluorescence of LysEGFP mice was used to measure the infection-induced inflammation. Furthermore, biofilm formation on the implants was visualized at 7 and 14 postoperative days by variable-pressure scanning electron microscopy (VP-SEM). Using this model, a minocycline/rifampin-impregnated bioresorbable polymer implant coating was effective in reducing the infection, decreasing inflammation and preventing biofilm formation. Conclusions/Significance Taken together, this mouse model may represent an alternative pre-clinical screening tool to evaluate novel in vivo therapeutic strategies before studies in larger animals and in human subjects. Furthermore, the antibiotic-polymer implant coating evaluated in this study was clinically effective, suggesting the potential for this strategy as a therapeutic intervention to combat post-arthroplasty infections.


Immunity | 2012

Leukotriene B4-Driven Neutrophil Recruitment to the Skin Is Essential for Allergic Skin Inflammation

Michiko K. Oyoshi; Rui He; Yitang Li; Subhanjan Mondal; Juhan Yoon; Roshi Afshar; Mei Chen; David M. Lee; Hongbo R. Luo; Andrew D. Luster; John S. Cho; Lloyd S. Miller; Larson A; George F. Murphy; Raif S. Geha

Scratching triggers skin flares in atopic dermatitis. We demonstrate that scratching of human skin and tape stripping of mouse skin cause neutrophil influx. In mice, this influx was largely dependent on the generation of leukotriene B4 (LTB4) by neutrophils and their expression of the LTB4 receptor BLT1. Allergic skin inflammation in response to epicutaneous (EC) application of ovalbumin to tape-stripped skin was severely impaired in Ltb4r1(-/-) mice and required expression of BLT1 on both T cells and non-T cells. Cotransfer of wild-type (WT) neutrophils, but not neutrophils deficient in BLT1 or the LTB4-synthesizing enzyme LTA4H, restored the ability of WT CD4(+) effector T cells to transfer allergic skin inflammation to Ltb4r1(-/-) recipients. Pharmacologic blockade of LTB4 synthesis inhibited allergic skin inflammation elicited by cutaneous antigen challenge in previously EC-sensitized mice. Our results demonstrate that a neutrophil-T cell axis reliant on LTB4-BLT1 interaction is required for allergic skin inflammation.


Angewandte Chemie | 2013

Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies.

Yan Li; Kazuki Fukushima; Daniel J. Coady; Amanda C. Engler; Shaoqiong Liu; Yuan Huang; John S. Cho; Yi Guo; Lloyd S. Miller; Jeremy P. K. Tan; Pui Lai Rachel Ee; Weimin Fan; Yi Yan Yang; James L. Hedrick

Fighting the resistance: biodegradable and injectable/moldable hydrogels with hierarchical nanostructures were made with broad-spectrum antimicrobial activities and biofilm-disruption capability. They demonstrate no cytotoxicity in vitro, and show excellent skin biocompatibility in animals. These hydrogels have great potential for clinical use in prevention and treatment of various multidrug-resistant infections.


Journal of Orthopaedic Research | 2012

Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study

Jonathan R. Pribaz; Nicholas M. Bernthal; Fabrizio Billi; John S. Cho; Romela Irene Ramos; Yi Guo; Ambrose L. Cheung; Kevin P. Francis; Lloyd S. Miller

Post‐arthroplasty infections are a devastating problem in orthopaedic surgery. While acute infections can be treated with a single stage washout and liner exchange, chronic infections lead to multiple reoperations, prolonged antibiotic courses, extended disability, and worse clinical outcomes. Unlike previous mouse models that studied an acute infection, this work aimed to develop a model of a chronic post‐arthroplasty infection. To achieve this, a stainless steel implant in the knee joints of mice was inoculated with a bioluminescent Staphylococcus aureus strain (1 × 102–1 × 104 colony forming units, CFUs) and in vivo imaging was used to monitor the bacterial burden for 42 days. Four different S. aureus strains were compared in which the bioluminescent construct was integrated in an antibiotic selection plasmid (ALC2906), the bacterial chromosome (Xen29 and Xen40), or a stable plasmid (Xen36). ALC2906 had increased bioluminescent signals through day 10, after which the signals became undetectable. In contrast, Xen29, Xen40, and Xen36 had increased bioluminescent signals through 42 days with the highest signals observed with Xen36. ALC2906, Xen29, and Xen40 induced significantly more inflammation than Xen36 as measured by in vivo enhanced green fluorescence protein (EGFP)‐neutrophil flourescence of LysEGFP mice. All four strains induced comparable biofilm formation as determined by variable‐pressure scanning electron microscopy. Using a titanium implant, Xen36 had higher in vivo bioluminescence signals than Xen40 but had similar biofilm formation and adherent bacteria. In conclusion, Xen29, Xen40, and especially Xen36, which had stable bioluminescent constructs, are feasible for long‐term in vivo monitoring of bacterial burden and biofilm formation to study chronic post‐arthroplasty infections and potential antimicrobial interventions.


Journal of Investigative Dermatology | 2011

Noninvasive In Vivo Imaging to Evaluate Immune Responses and Antimicrobial Therapy against Staphylococcus aureus and USA300 MRSA Skin Infections

John S. Cho; Jamie Zussman; Niles P. Donegan; Romela Irene Ramos; Nairy C. Garcia; Daniel Z. Uslan; Yoichiro Iwakura; Scott I. Simon; Ambrose L. Cheung; Robert L. Modlin; Jenny Kim; Lloyd S. Miller

Staphylococcus aureus skin infections represent a significant public health threat because of the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). As greater understanding of protective immune responses and more effective antimicrobial therapies are needed, a S. aureus skin wound infection model was developed in which full-thickness scalpel cuts on the backs of mice were infected with a bioluminescent S. aureus (methicillin sensitive) or USA300 community-acquired MRSA strain and in vivo imaging was used to noninvasively monitor the bacterial burden. In addition, the infection-induced inflammatory response was quantified using in vivo fluorescence imaging of LysEGFP mice. Using this model, we found that both IL-1α and IL-1β contributed to host defense during a wound infection, whereas IL-1β was more critical during an intradermal S. aureus infection. Furthermore, treatment of a USA300 MRSA skin infection with retapamulin ointment resulted in up to 85-fold reduction in bacterial burden and a 53% decrease in infection-induced inflammation. In contrast, mupirocin ointment had minimal clinical activity against this USA300 strain, resulting in only a 2-fold reduction in bacterial burden. Taken together, this S. aureus wound infection model provides a valuable preclinical screening method to investigate cutaneous immune responses and the efficacy of topical antimicrobial therapies.


Journal of Orthopaedic Research | 2011

Protective role of IL-1β against post-arthroplasty Staphylococcus aureus infection

Nicholas M. Bernthal; Jonathan R. Pribaz; Alexandra I. Stavrakis; Fabrizio Billi; John S. Cho; Romela Irene Ramos; Kevin P. Francis; Yoichiro Iwakura; Lloyd S. Miller

MyD88 is an adapter molecule that is used by both IL‐1R and TLR family members to initiate downstream signaling and promote immune responses. Given that IL‐1β is induced after Staphylococcus aureus infections and TLR2 is activated by S. aureus lipopeptides, we hypothesized that IL‐1β and TLR2 contribute to MyD88‐dependent protective immune responses against post‐arthroplasty S. aureus infections. To test this hypothesis, we used a mouse model of a post‐arthroplasty S. aureus infection to compare the bacterial burden, biofilm formation and neutrophil recruitment in IL‐1β‐deficient, TLR2‐deficient and wild‐type (wt) mice. By using in vivo bioluminescence imaging, we found that the bacterial burden in IL‐1β‐deficient mice was 26‐fold higher at 1 day after infection and remained 3‐ to 10‐fold greater than wt mice through day 42. In contrast, the bacterial burden in TLR2‐deficient mice did not differ from wt mice. In addition, implants harvested from IL‐1β‐deficient mice had more biofilm formation and 14‐fold higher adherent bacteria compared with those from wt mice. Finally, IL‐1β‐deficient mice had ∼50% decreased neutrophil recruitment to the infected postoperative joints than wt mice. Taken together, these findings suggest a mechanism by which IL‐1β induces neutrophil recruitment to help control the bacterial burden and the ensuing biofilm formation in a post‐surgical joint.


Placenta | 2013

Placental glucose transporter 3 (GLUT3) is up-regulated in human pregnancies complicated by late-onset intrauterine growth restriction.

Carla Janzen; Margarida Y.Y. Lei; John S. Cho; Peggy S. Sullivan; Bo-Chul Shin; Sherin U. Devaskar

INTRODUCTION Transport of glucose from maternal blood across the placental trophoblastic tissue barrier is critical to sustain fetal growth. The mechanism by which GLUTs are regulated in trophoblasts in response to ischemic hypoxia encountered with intrauterine growth restriction (IUGR) has not been suitably investigated. OBJECTIVE To investigate placental expression of GLUT1, GLUT3 and GLUT4 and possible mechanisms of GLUT regulation in idiopathic IUGR. METHODS We analyzed clinical, biochemical and histological data from placentas collected from women affected by idiopathic full-term IUGR (n = 10) and gestational age-matched healthy controls (n = 10). RESULTS We found increased GLUT3 protein expression in the trophoblast (cytotrophoblast greater than syncytiotrophoblast) on the maternal aspect of the placenta in IUGR compared to normal placenta, but no differences in GLUT1 or GLUT4 were found. No differential methylation of the GLUT3 promoter between normal and IUGR placentas was observed. Increased GLUT3 expression was associated with an increased nuclear concentration of HIF-1α, suggesting hypoxia may play a role in the up-regulation of GLUT3. DISCUSSION Further studies are needed to elucidate whether increased GLUT3 expression in IUGR is a marker for defective villous maturation or an adaptive response of the trophoblast in response to chronic hypoxia. CONCLUSIONS Patients with IUGR have increased trophoblast expression of GLUT3, as found under the low-oxygen conditions of the first trimester.

Collaboration


Dive into the John S. Cho's collaboration.

Top Co-Authors

Avatar

Lloyd S. Miller

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Guo

University of California

View shared research outputs
Top Co-Authors

Avatar

Genhong Cheng

University of California

View shared research outputs
Top Co-Authors

Avatar

Scott I. Simon

University of California

View shared research outputs
Top Co-Authors

Avatar

Yoichiro Iwakura

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Billi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge