Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John S. Mort is active.

Publication


Featured researches published by John S. Mort.


Journal of Biological Chemistry | 1997

Role of the occluding loop in cathepsin B activity.

Chantal Illy; Omar Quraishi; Jing Wang; Enrico O. Purisima; Thierry Vernet; John S. Mort

Within the lysosomal cysteine protease family, cathepsin B is unique due to its ability to act both as an endopeptidase and a peptidyldipeptidase. This latter capacity to remove C-terminal dipeptides has been attributed to the presence of a 20-residue insertion, termed the occluding loop, that blocks the primed terminus of the active site cleft. Variants of human procathepsin B, where all or part of this element was deleted, were expressed in the yeast Pichia pastoris. A mutant, where the 12 central residues of the occluding loop were deleted, autoprocessed, albeit more slowly than the wild type proenzyme, to yield a mature form of the enzyme with endopeptidase activity comparable with the wild-type cathepsin B, but totally lacking exopeptidase activity. This deletion mutant showed a 40-fold higher affinity for the inhibitor cystatin C, suggesting that the occluding loop normally restricts access of this inhibitor to the active site. In addition, the binding affinity of the cathepsin B propeptide, which is a potent inhibitor of this enzyme, was 50-fold increased, consistent with the finding that the loop reorients on activation of the proenzyme. These results suggest that the endopeptidase activity of cathepsin B is an evolutionary remnant since, as a consequence of its membership in the papain family, the propeptide must be able to bind unobstructed through the full length of the active site cleft.


Structure | 1996

Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion

Miroslaw Cygler; J. Sivaraman; Pawel Grochulski; René Coulombe; Andrew C. Storer; John S. Mort

BACKGROUND Cysteine proteases of the papain superfamily are synthesized as inactive precursors with a 60-110 residue N-terminal prosegment. The propeptides are potent inhibitors of their parent proteases. Although the proregion binding mode has been elucidated for all other protease classes, that of the cysteine proteases remained elusive. RESULTS We report the three-dimensional structure of rat procathepsin B, determined at 2.8 A resolution. The 62-residue proregion does not form a globular structure on its own, but folds along the surface of mature cathepsin B. The N-terminal part of the proregion packs against a surface loop, with Trp24p (p indicating the proregion) playing a pivotal role in these interactions. Inhibition occurs by blocking access to the active site: part of the proregion enters the substrate-binding cleft in a similar manner to a natural substrate, but in a reverse orientation. CONCLUSIONS The structure of procathepsin B provides the first insight into the mode of interaction between a mature cysteine protease from the papain superfamily and its prosegment. Maturation results in only one loop of cathepsin B changing conformation significantly, replacing contacts lost by removal of the prosegment. Contrary to many other proproteases, no rearrangement of the N terminus occurs following activation. Binding of the prosegment involves interaction with regions of the enzyme remote from the substrate-binding cleft and suggests a novel strategy for inhibitor design. The region of the prosegment where the activating cleavage occurs makes little contact with the enzyme, leading to speculation on the activation mechanism.


Annals of the Rheumatic Diseases | 2008

Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis

P.L.E.M. van Lent; Lilyanne C. Grevers; A.B. Blom; A. Sloetjes; John S. Mort; Thomas Vogl; Wolfgang Nacken; W.B. van den Berg; J. Roth

Objective: To study the active involvement of Myeloid-related proteins S100A8 and S100A9 in joint inflammation and cartilage destruction during antigen-induced arthritis (AIA). Methods: Joint inflammation and cartilage destruction was measured with 99mTc uptake and histology. The role of S100A8/A9 was investigated by inducing AIA in S100A9–/– mice that also lack S100A8 at protein level, or after intra-articular injection of rS100A8 in mouse knee joints. Cartilage destruction was measured using immunolocalisation of the neoepitope VDIPEN or NITEGE. mRNA levels of matrix metalloproteinases (MMPs) and cytokines were measured using reverse transcriptase (RT)-PCR. Results: Immunisation of S100A9–/– mice with the antigen mBSA induced normal cellular and humoral responses, not different from wild type (WT) controls. However, joint swelling measured at day 3 and 7 after AIA induction was significantly lower (36 and 70%, respectively). Histologically, at day 7 AIA, cellular mass was much lower (63–80%) and proteoglycan depletion from cartilage layers was significantly reduced (between 50–95%). Cartilage destruction mediated by MMPs was absent in S100A9–/– mice but clearly present in controls. MMP3, 9 and 13 mRNA levels were significantly lowered in arthritic synovia of S100A9–/–. In vitro stimulation of macrophages by the heterodimer S100A8/A9 or S100A8 elevated mRNA levels of MMP3, 9 and in particular MMP13. Intra-articular injection of S100A8 caused prominent joint inflammation and depletion of proteoglycans at day 1. Significant upregulation of mRNA levels of S100A8/A9, cytokines (interleukin 1 (IL1)), MMPs (MMP3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4) was found in the synovium and correlated with strong upregulation of NITEGE neoepitopes within the cartilage layers. Conclusions: S100A8/A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis.


Arthritis Research & Therapy | 2001

Articular cartilage and changes in Arthritis: Matrix degradation

John S. Mort; Caron J. Billington

While many proteases in articular cartilage have been described, current studies indicate that members of two families of metalloproteases – MMPs and the ADAMTSs – are responsible for the degradation of the major components of this tissue. Collagenases (MMPs) make the first cleavage in triple-helical collagen, allowing its further degradation by other proteases. Aggrecanases (ADAMTSs), in conjunction with other MMPs, degrade aggrecan, a component of the proteoglycan aggregate. Anti-neoepitope antibodies that recognize the cleavage products of collagen and aggrecan generated by these enzymes are now available and are being used to detect the sites of action and to quantitate degradation products.


Arthritis & Rheumatism | 2012

Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4.

R.F. Schelbergen; A.B. Blom; Martijn H. J. van den Bosch; Annet Sloetjes; Shahla Abdollahi-Roodsaz; B. Wim Schreurs; John S. Mort; Thomas Vogl; J. Roth; Wim B. van den Berg; Peter L. E. M. van Lent

OBJECTIVE S100A8 and S100A9 are two Ca(2+) binding proteins classified as damage-associated molecular patterns or alarmins that are found in high amounts in the synovial fluid of osteoarthritis (OA) patients. The purpose of this study was to investigate whether S100A8 and/or S100A9 can interact with chondrocytes from OA patients to increase catabolic mediators. METHODS Using immunohistochemistry, we stained for S100A8 and S100A9 protein, matrix metalloproteinases (MMPs), and a cartilage-breakdown epitope specific for MMPs (VDIPEN) in cartilage from OA donors. Isolated chondrocytes or explants from OA and non-OA donors were stimulated with S100A8 and/or S100A9. Messenger RNA and protein levels of MMPs, cytokines, and cartilage matrix molecules were determined with quantitative reverse transcription-polymerase chain reaction and Luminex techniques, respectively. For receptor blocking studies, specific inhibitors for Toll-like receptor 4 (TLR-4), receptor for advanced glycation end products (RAGE), and carboxylated glycans were used. RESULTS In cartilage from OA patients, the expression of S100A8 and S100A9 protein close to chondrocytes was associated with proteoglycan depletion and expression of MMP-1, MMP-3, and VDIPEN. Stimulation of chondrocytes with S100A8 and S100A9 caused a strong up-regulation of catabolic markers (MMPs 1, 3, 9, and 13, interleukin-6 [IL-6], IL-8, and monocyte chemotactic protein 1) and down-regulation of anabolic markers (aggrecan and type II collagen), thereby favoring cartilage breakdown. Blocking TLR-4, but not carboxylated glycans or RAGE, inhibited the S100 effect. The catabolic S100 effect was significantly more pronounced in chondrocytes from OA patients as compared to those from non-OA patients, possibly due to higher TLR-4 expression. CONCLUSION S100A8 and S100A9 have a catabolic effect on human chondrocytes that is TLR-4 dependent. OA chondrocytes are more sensitive than normal chondrocytes to S100 stimulation.


Journal of Medical Genetics | 2013

Mutations in WNT1 are a cause of osteogenesis imperfecta

Somayyeh Fahiminiya; Jacek Majewski; John S. Mort; Pierre Moffatt; Francis H. Glorieux; Frank Rauch

Background Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually due to dominant mutations in COL1A1 or COL1A2. Rare recessive forms of OI, caused by mutations in genes involved in various aspects of bone formation, have been described as well. Objective To identify the cause of OI in eight children with severe bone fragility and a clinical diagnosis of OI type IV who had had negative results on COL1A1/COL1A2 Sanger sequencing. Methods Whole exome sequencing was performed in genomic DNA samples from all eight individuals. Results WNT1 mutations were found in four children from three families. WNT1 was the only gene where mutations were found in all of these four patients. Two siblings from a consanguineous family had a homozygous missense mutation affecting a highly conserved cysteine residue in WNT1 (c.428G>T (p.Cys143Phe)). One girl had a homozygous frameshift deletion (c.287_300del(p.Gln96Profs)). A girl from a third family was compound heterozygous for a frameshift insertion and a missense mutation affecting a conserved amino acid (c.946_949insAACA (p.Ser317Lysfs); c.1063G>T (p.Val355Phe)). All of these children had short stature, low bone density, and severe vertebral compression fractures in addition to multiple long bone fractures in the first years of life. The Wnt signalling pathway is one of the key regulators of osteoblast activity. Conclusions Recessive inactivating mutations in WNT1 are a new cause of OI type IV.


Bone | 2000

Proteolysis of human bone collagen by cathepsin K: characterization of the cleavage sites generating the cross-linked N-telopeptide neoepitope

L.M Atley; John S. Mort; M Lalumiere; David R. Eyre

An immunoassay for cross-linked N-telopeptides of type I collagen (NTx) in urine or serum has proven to give a sensitive index of osteoclast-mediated bone resorption. We show that recombinant human cathepsin K is highly active in releasing the NTx neoepitope in 100% yield from bone type I collagen. Cathepsins S, L, and B were also active but at 57%, 36%, and 27% of the yield of K, respectively. The matrix metalloproteinases that were tested, stromelysin, collagenase 3, or matrilysin, did not produce any immunoreactivity. Cathepsin K also acted on demineralized bone matrix, releasing NTx epitope and completely dissolving the bone particles in 24-48 h. Proteolytic cleavage of a G-L peptide bond in the alpha2(I)N-telopeptide was shown to be required for recognition by monoclonal antibody 1H11. Peptide analysis identified bonds in the N-telopeptide and helical cross-linking domains adjacent to the cross-linking residues at which cathepsin K cleaved in bone collagen. The sites were consistent with the known substrate specificity of cathepsin K, which prefers a hydrophobic residue or proline in the critical P2 position. The NTx peptides generated by cathepsin K were of low molecular weight, in the range previously found in human urine. Because cathepsin K appears to be essential for the normal resorption of mineralized bone matrix by osteoclasts, these findings help explain the specificity and responsiveness of NTx as a marker of osteoclastic bone resorption in vivo.


Spine | 1999

Age-related changes in fibromodulin and lumican in human intervertebral discs

Robert Sztrolovics; Mauro Alini; John S. Mort; Peter J. Roughley

STUDY DESIGN An analysis of proteoglycans of the intervertebral disc using immunoblotting of tissue extracts. OBJECTIVES To investigate the changes in structure and abundance of fibromodulin and lumican in human intervertebral discs during aging and degeneration. SUMMARY OF BACKGROUND DATA Fibromodulin and lumican are keratan sulfate proteoglycan constituents of the discs extracellular matrix, whose interaction with collagen fibrils may contribute to the mechanical properties of the tissue. Changes in their abundance and/or structure that occur with aging and degeneration therefore may have an impact on disc function. METHODS Lumbar intervertebral discs were obtained from individuals of different ages, and extracts of anulus fibrosus and nucleus pulposus were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting using antibodies specific for fibromodulin and lumican. RESULTS The major changes in abundance observed with age were a decrease in fibromodulin in the adult nucleus pulposus and an increase in lumican in anulus fibrosus during early juvenile development. In addition, fibromodulin in the anulus fibrosus exhibited a structural change with increasing age, characterized by a shift toward the predominance of its glycoprotein form lacking keratan sulfate. Fibromodulin was more abundant in the anulus fibrosus than in nucleus pulposus at all ages, whereas lumican was much more abundant in nucleus pulposus than in anulus fibrosus in the young juvenile; in the adult, however, lumican was present in comparable levels in both tissues. With increasing degrees of degeneration, fibromodulin exhibited an increase in abundance. CONCLUSIONS Growth, aging, and degeneration of the intervertebral disc are associated with changes in the abundance and structure of fibromodulin and lumican, which presumably influence the functional properties of the tissue.


Matrix | 1993

Direct evidence for active metalloproteinases mediating matrix degradation in interleukin 1-stimulated human articular cartilage.

John S. Mort; George R. Dodge; Peter J. Roughley; J. Liu; Susan J. Finch; Gene DiPasquale; A. Robin Poole

When adult human articular cartilage was maintained in organ culture in the presence of interleukin 1 beta, increased destruction of the extracellular matrix was observed, as judged by increased type II collagen degradation in situ determined immunohistochemically and the increased release of proteoglycan into the culture medium. Concomitant with these changes was the increased release of latent metalloproteinases into the culture medium. Culture of cartilage in the presence of a peptidylhydroxamate metalloproteinase inhibitor indicated a key role for the active forms of these enzymes in situ, since it produced a marked reduction in both proteoglycan release and collagen degradation. This compound had no detectable cytotoxic effects in organ culture and did not reduce the secretion of the metalloproteinases. The results of this study provide direct evidence that the latent metalloproteinase precursors, whose release is greatly stimulated by interleukin 1, are indeed activated to some degree and participate in cartilage matrix degradation.


Journal of Biological Chemistry | 1999

Negative Regulation of Epidermal Growth Factor Signaling by Selective Proteolytic Mechanisms in the Endosome Mediated by Cathepsin B

François Authier; Mourad Métioui; Alexander W. Bell; John S. Mort

We have investigated the relevant protease activity in rat liver, which is responsible for most of the receptor-mediated epidermal growth factor (EGF) degradation in vivo. EGF was sequentially cleaved by endosomal proteases at a limited number of sites, which were identified by high performance liquid chromatography and mass spectrometry. EGF proteolysis is initiated by hydrolysis at the C-terminal Glu51-Leu52 bond. Three additional minor cleavage sites were identified at positions Arg48-Trp49, Trp49-Trp50, and Trp50-Glu51 after prolonged incubation. Using nondenaturating immunoprecipitation and cross-linking procedures, the major proteolytic activity was identified as that of the cysteine protease cathepsin-B. The effect of injected EGF on subsequent endosomal EGF receptor (EGFR) proteolysis was further evaluated by immunoblotting. Using endosomal fractions prepared from EGF-injected rats and incubated in vitro, the EGFR was lost with a time course superimposable with the loss of phosphotyrosine content. The cathepsin-B proinhibitor CA074-Me inhibited both in vivoand in vitro the endosomal degradation of the EGFR and increased the tyrosine phosphorylation states of the EGFR protein and the molecule SHC within endosomes. The data, therefore, describe a unique pathway for the endosomal processing of internalized EGF receptor complexes, which involves the sequential function of cathepsin-B through selective degradation of both the ligand and receptor.

Collaboration


Dive into the John S. Mort's collaboration.

Top Co-Authors

Avatar

Peter J. Roughley

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanne C. Krupa

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

Frank Beier

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Lamplugh

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sadiq Hasnain

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Robert Sztrolovics

Shriners Hospitals for Children

View shared research outputs
Researchain Logo
Decentralizing Knowledge