Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John S. Tregoning is active.

Publication


Featured researches published by John S. Tregoning.


Clinical Microbiology Reviews | 2010

Respiratory Viral Infections in Infants: Causes, Clinical Symptoms, Virology, and Immunology

John S. Tregoning; Jürgen Schwarze

SUMMARY In global terms, respiratory viral infection is a major cause of morbidity and mortality. Infancy, in particular, is a time of increased disease susceptibility and severity. Early-life viral infection causes acute illness and can be associated with the development of wheezing and asthma in later life. The most commonly detected viruses are respiratory syncytial virus (RSV), rhinovirus (RV), and influenza virus. In this review we explore the complete picture from epidemiology and virology to clinical impact and immunology. Three striking aspects emerge. The first is the degree of similarity: although the infecting viruses are all different, the clinical outcome, viral evasion strategies, immune response, and long-term sequelae share many common features. The second is the interplay between the infant immune system and viral infection: the immaturity of the infant immune system alters the outcome of viral infection, but at the same time, viral infection shapes the development of the infant immune system and its future responses. Finally, both the virus and the immune response contribute to damage to the lungs and subsequent disease, and therefore, any prevention or treatment needs to address both of these factors.


Clinical Microbiology Reviews | 2005

Immune Responses and Disease Enhancement during Respiratory Syncytial Virus Infection

Peter J. M. Openshaw; John S. Tregoning

SUMMARY Respiratory syncytial virus (RSV) is one of the commonest and most troublesome viruses of infancy. It causes most cases of bronchiolitis, which is associated with wheezing in later childhood. In primary infection, the peak of disease typically coincides with the development of specific T- and B-cell responses, which seem, in large part, to be responsible for disease. Animal models clearly show that a range of immune responses can enhance disease severity, particularly after vaccination with formalin-inactivated RSV. Prior immune sensitization leads to exuberant chemokine production, an excessive cellular influx, and an overabundance of cytokines during RSV challenge. Under different circumstances, specific mediators and T-cell subsets and antibody-antigen immune complex deposition are incriminated as major factors in disease. Animal models of immune enhancement permit a deep understanding of the role of specific immune responses in RSV disease, assist in vaccine design, and indicate which immunomodulatory therapy might be beneficial to children with bronchiolitis.


Nature Medicine | 2006

A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines

Amin E. Moghaddam; Wieslawa Olszewska; Belinda Wang; John S. Tregoning; Rebecca Helson; Quentin J. Sattentau; Peter J. M. Openshaw

Heat, oxidation and exposure to aldehydes create reactive carbonyl groups on proteins, targeting antigens to scavenger receptors. Formaldehyde is widely used in making vaccines, but has been associated with atypical enhanced disease during subsequent infection with paramyxoviruses. We show that carbonyl groups on formaldehyde-treated vaccine antigens boost T helper type 2 (TH2) responses and enhance respiratory syncytial virus (RSV) disease in mice, an effect partially reversible by chemical reduction of carbonyl groups.


Journal of Virology | 2008

Alveolar Macrophages Are a Major Determinant of Early Responses to Viral Lung Infection but Do Not Influence Subsequent Disease Development

Philippa K. Pribul; James A. Harker; Belinda Wang; Hongwei Wang; John S. Tregoning; Jürgen Schwarze; Peter J. M. Openshaw

ABSTRACT Macrophages are abundant in the lower respiratory tract. They play a central role in the innate response to infection but may also modulate excessive inflammation. Both macrophages and ciliated epithelial cells respond to infection by releasing soluble mediators, leading to the recruitment of innate and adaptive effector cells. To study the role of lung macrophages in acute respiratory viral infection, we depleted them by the inhalation of clodronate liposomes in an established mouse model of respiratory syncytial virus (RSV) disease. Infection caused an immediate local release of inflammatory cytokines and chemokines, peaking on day 1, which was virtually abolished by clodronate liposome treatment. Macrophage depletion inhibited the activation (days 1 to 2) and recruitment (day 4) of natural killer (NK) cells and enhanced peak viral load in the lung (day 4). However, macrophage depletion did not affect the recruitment of activated CD4 or CD8 T cells, weight loss, or virus-induced changes in lung function. Therefore, lung macrophages play a central role in the early responses to viral infection but have remarkably little effect on the adaptive response occurring at the time of peak disease severity.


Journal of Virology | 2010

CD25+ Natural Regulatory T Cells Are Critical in Limiting Innate and Adaptive Immunity and Resolving Disease following Respiratory Syncytial Virus Infection

Debbie C. P. Lee; James A. Harker; John S. Tregoning; Sowsan F. Atabani; Cecilia Johansson; Jürgen Schwarze; Peter J. M. Openshaw

ABSTRACT Regulatory CD4+ T cells have been shown to be important in limiting immune responses, but their role in respiratory viral infections has received little attention. Here we observed that following respiratory syncytial virus (RSV) infection, CD4+ Foxp3+ CD25+ natural regulatory T-cell numbers increased in the bronchoalveolar lavage fluid, lung, mediastinal lymph nodes, and spleen. The depletion of CD25+ natural regulatory T cells prior to RSV infection led to enhanced weight loss with delayed recovery that was surprisingly accompanied by increased numbers of activated natural killer cells in the lung and bronchoalveolar lavage fluid on day 8 postinfection. Increased numbers of neutrophils were also detected within the bronchoalveolar lavage fluid and correlated with elevated levels of myeloperoxidase as well as interleukin-6 (IL-6) and gamma interferon (IFN-γ). CD25+ natural regulatory T-cell depletion also led to enhanced numbers of proinflammatory T cells producing IFN-γ and tumor necrosis factor alpha (TNF-α) in the lung. Despite these increases in inflammatory responses and disease severity, the viral load was unaltered. This work highlights a critical role for natural regulatory T cells in regulating the adaptive and innate immune responses during the later stages of lung viral infections.


Journal of Virology | 2008

The role of T cells in the enhancement of respiratory syncytial virus infection severity during adult reinfection of neonatally sensitized mice.

John S. Tregoning; Yuko Yamaguchi; James A. Harker; Belinda Wang; Peter J. M. Openshaw

ABSTRACT Respiratory syncytial virus (RSV) is the major cause of infantile bronchiolitis and hospitalization. Severe RSV disease is associated with the development of wheezing in later life. In a mouse model of the delayed effects of RSV, the age at primary infection determines responses to reinfection in adulthood. During primary RSV infection, neonatal BALB/c mice developed only mild disease and recruited CD8 cells that were defective in gamma interferon production. Secondary reinfection of neonatally primed mice caused enhanced inflammation and profuse lung T-cell recruitment. CD4 cell depletion during secondary RSV challenge attenuated disease (measured by weight loss); depletion of CD8 cells also markedly attenuated disease severity but enhanced lung eosinophilia, and depletion of both CD4 and CD8 cells together completely abrogated weight loss. Depletion of CD8 (but not CD4) cells during primary neonatal infection was protective against weight loss during adult challenge. Therefore, T cells, in particular CD8 T cells, play a central role in the outcome of neonatal infection by enhancing disease during secondary challenge. These findings demonstrate a crucial role for T cells in the regulation of immune responses after neonatal infection.


Journal of Virology | 2006

Differential Chemokine Expression following Respiratory Virus Infection Reflects Th1- or Th2-Biased Immunopathology

Fiona J. Culley; Alasdair M. J. Pennycook; John S. Tregoning; Tracy Hussell; Peter J. M. Openshaw

ABSTRACT Respiratory syncytial virus (RSV) is a major viral pathogen of infants that also reinfects adults. During RSV infection, inflammatory host cell recruitment to the lung plays a central role in determining disease outcome. Chemokines mediate cell recruitment to sites of inflammation and are influenced by, and influence, the production of cytokines. We therefore compared chemokine production in a mouse model of immunopathogenic RSV infection in which either Th1 or Th2 immunopathology is induced by prior sensitization to individual RSV proteins. Chemokine expression profiles were profoundly affected by the nature of the pulmonary immunopathology: “Th2” immunopathology in BALB/c mice was associated with increased and prolonged expression of CCL2 (MCP-1), CXCL10 (IP-10), and CCL11 (eotaxin) starting within 24 h of challenge. C57BL/6 mice with “Th2” pathology (enabled by a deficiency of CD8+ cells) also showed increased CCL2 production. No differences in chemokine receptor expression were detected. Chemokine blockers may therefore be of use for children with bronchiolitis.


PLOS ONE | 2012

Glucopyranosyl Lipid Adjuvant (GLA), a Synthetic TLR4 Agonist, Promotes Potent Systemic and Mucosal Responses to Intranasal Immunization with HIVgp140

Mauricio A. Arias; Griet A. Van Roey; John S. Tregoning; Magdalini Moutaftsi; Rhea N. Coler; Hillarie Plessner Windish; Steven G. Reed; Darrick Carter; Robin J. Shattock

Successful vaccine development against HIV will likely require the induction of strong, long-lasting humoral and cellular immune responses in both the systemic and mucosal compartments. Based on the known immunological linkage between the upper-respiratory and urogenital tracts, we explored the potential of nasal adjuvants to boost immunization for the induction of vaginal and systemic immune responses to gp140. Mice were immunized intranasally with HIV gp140 together with micellar and emulsion formulations of a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant (GLA) and responses were compared to R848, a TLR7/8 agonist, or chitosan, a non TLR adjuvant. GLA and chitosan but not R848 greatly enhanced serum immunoglobulin levels when compared to antigen alone. Both GLA and chitosan induced high IgG and IgA titers in nasal and vaginal lavage and feces. The high IgA and IgG titers in vaginal lavage were associated with high numbers of gp140-specific antibody secreting cells in the genital tract. Whilst both GLA and chitosan induced T cell responses to immunization, GLA induced a stronger Th17 response and chitosan induced a more Th2 skewed response. Our results show that GLA is a highly potent intranasal adjuvant greatly enhancing humoral and cellular immune responses, both systemically and mucosally.


Journal of Virology | 2006

Role of CCL5 (RANTES) in viral lung disease

Fiona J. Culley; Alasdair M. J. Pennycook; John S. Tregoning; Jonathan S. Dodd; Gerhard Walzl; Timothy N. C. Wells; Tracy Hussell; Peter J. M. Openshaw

ABSTRACT CCL5/RANTES is a key proinflammatory chemokine produced by virus-infected epithelial cells and present in respiratory secretions of asthmatics. To examine the role of CCL5 in viral lung disease, we measured its production during primary respiratory syncytial virus (RSV) infection and during secondary infection after sensitizing vaccination that induces Th2-mediated eosinophilia. A first peak of CCL5 mRNA and protein production was seen at 18 to 24 h of RSV infection, before significant lymphocyte recruitment occurred. Treatment in vivo with Met-RANTES (a competitive chemokine receptor blocker) throughout primary infection decreased CD4+ and CD8+ cell recruitment and increased viral replication. In RSV-infected, sensitized mice with eosinophilic disease, CCL5 production was further augmented; Met-RANTES treatment again reduced inflammatory cell recruitment and local cytokine production. A second wave of CCL5 production occurred on day 7, attributable to newly recruited T cells. Paradoxically, mice treated with Met-RANTES during primary infection demonstrated increased cellular infiltration during reinfection. We therefore show that RSV induces CCL5 production in the lung and this causes the recruitment of RSV-specific cells, including those making additional CCL5. If this action is blocked with Met-RANTES, inflammation decreases and viral clearance is delayed. However, the exact effects of chemokine modulation depend critically on time of administration, a factor that may potentially complicate the use of chemokine blockers in inflammatory diseases.


European Journal of Immunology | 2005

Protection against tetanus toxin using a plant-based vaccine.

John S. Tregoning; Simon Clare; Frances Bowe; Lorna Edwards; Neil Fairweather; Omar Qazi; Peter J. Nixon; Pal Maliga; Gordon Dougan; Tracy Hussell

Plant‐expressed vaccines may provide a unique opportunity for generating anti‐pathogen immunity, especially in countries where cold storage is lacking. In the following study, we show that soluble protein from tobacco leaves expressing fragment C of tetanus toxin protected mice against a lethal tetanus toxin challenge. More importantly, we show that a single intranasal (i.n.) vaccination was as efficient as oral delivery, inducing high levels of activated CD4+ T cells and anti‐toxin antibody. Unlike the oral route, i.n. delivery did not require the presence of adjuvant (cholera toxin). Indeed, addition of cholera toxin induced bystander immune responses to plant proteins as well. This is the first study documenting protective immunity by a single i.n. dose of plant vaccine. Plant‐based vaccines are promising because they are more heat stable, are easy to produce, cheap and do not require needles.

Collaboration


Dive into the John S. Tregoning's collaboration.

Top Co-Authors

Avatar

Peter J. M. Openshaw

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Harker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Belinda Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge