John SantaLucia
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John SantaLucia.
RNA | 2012
José Almeida Cruz; Marc Frédérick Blanchet; Michal Boniecki; Janusz M. Bujnicki; Shi-Jie Chen; Song Cao; Rhiju Das; Feng Ding; Nikolay V. Dokholyan; Samuel Coulbourn Flores; Lili Huang; Christopher A. Lavender; Véronique Lisi; François Major; Katarzyna Mikolajczak; Dinshaw J. Patel; Anna Philips; Tomasz Puton; John SantaLucia; Fredrick Sijenyi; Thomas Hermann; Kristian Rother; Magdalena Rother; Alexander Serganov; Marcin Skorupski; Tomasz Soltysinski; Parin Sripakdeevong; Irina Tuszynska; Kevin M. Weeks; Christina Waldsich
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises.
Journal of Chemical Theory and Computation | 2007
Raviprasad Aduri; Brian T. Psciuk; Pirro Saro; Hariprakash Taniga; H. Bernhard Schlegel; John SantaLucia
Classical molecular dynamics (MD) simulations are useful for characterizing the structure and dynamics of biological macromolecules, ultimately, resulting in elucidation of biological function. The AMBER force field is widely used and has well-defined bond length, bond angle, partial charge, and van der Waals parameters for all the common amino acids and nucleotides, but it lacks parameters for many of the modifications found in nucleic acids and proteins. Presently there are 107 known naturally occurring modifications that play important roles in RNA stability, folding, and other functions. Modified nucleotides are found in almost all transfer RNAs, ribosomal RNAs of both the small and large subunits, and in many other functional RNAs. We developed force field parameters for the 107 modified nucleotides currently known to be present in RNA. The methodology used for deriving the modified nucleotide parameters is consistent with the methods used to develop the Cornell et al. force field. These parameters will improve the functionality of AMBER so that simulations can now be readily performed on diverse RNAs having post-transcriptional modifications.
Nucleic Acids Research | 2005
Norman E. Watkins; John SantaLucia
Nearest-neighbor thermodynamic parameters of the ‘universal pairing base’ deoxyinosine were determined for the pairs I·C, I·A, I·T, I·G and I·I adjacent to G·C and A·T pairs. Ultraviolet absorbance melting curves were measured and non-linear regression performed on 84 oligonucleotide duplexes with 9 or 12 bp lengths. These data were combined with data for 13 inosine containing duplexes from the literature. Multiple linear regression was used to solve for the 32 nearest-neighbor unknowns. The parameters predict the Tm for all sequences within 1.2°C on average. The general trend in decreasing stability is I·C > I·A > I·T ≈ I· G > I·I. The stability trend for the base pair 5′ of the I·X pair is G·C > C·G > A·T > T·A. The stability trend for the base pair 3′ of I·X is the same. These trends indicate a complex interplay between H-bonding, nearest-neighbor stacking, and mismatch geometry. A survey of 14 tandem inosine pairs and 8 tandem self-complementary inosine pairs is also provided. These results may be used in the design of degenerate PCR primers and for degenerate microarray probes.
Biopolymers | 1997
John SantaLucia; Douglas H. Turner
The thermodynamics of RNA secondary structure formation in small model systems provides a database for predicting RNA structure from sequence. Methods for making these measurements are reviewed with emphasis on optical methods and treatment of experimental errors. Analysis of experimental results in terms of simple nearest-neighbor models is presented. Some measured sequence dependences of non-Watson-Crick motifs are discussed.
Organic and Biomolecular Chemistry | 2008
Jean-Paul Desaulniers; Yu Cheng Chang; Raviprasad Aduri; Sanjaya C. Abeysirigunawardena; John SantaLucia; Christine S. Chow
The (1)H NMR spectra of RNAs representing E. coli 23S rRNA helix 69 with [1,3-(15)N]pseudouridine modification at specific sites reveal unique roles for pseudouridine in stabilizing base-stacking interactions in the hairpin loop region.
Nucleic Acids Research | 2011
Norman E. Watkins; William J. Kennelly; Mike J. Tsay; Astrid Tuin; Lara Swenson; Hyung Ran Lee; Svetlana V. Morosyuk; Donald Hicks; John SantaLucia
The thermodynamic contributions of rA·dA, rC·dC, rG·dG and rU·dT single internal mismatches were measured for 54 RNA/DNA duplexes in a 1 M NaCl buffer using UV absorbance thermal denaturation. Thermodynamic parameters were obtained by fitting absorbance versus temperature profiles using the curve-fitting program Meltwin. The weighted average thermodynamic data were fit using singular value decomposition to determine the eight non-unique nearest-neighbor parameters for each internal mismatch. The new parameters predict the ΔG°37, ΔH° and melting temperature (Tm) of duplexes containing these single mismatches within an average of 0.33 kcal/mol, 4.5 kcal/mol and 1.4°C, respectively. The general trend in decreasing stability for the single internal mismatches is rG·dG > rU·dT > rA·dA > rC·dC. The stability trend for the base pairs 5′ of the single internal mismatch is rG·dC > rC·dG > rA·dT > rU·dA. The stability trend for the base pairs 3′ of the single internal mismatch is rC·dG > rG·dC >> rA·dT > rU·dA. These nearest-neighbor values are now a part of a complete set of single internal mismatch thermodynamic parameters for RNA/DNA duplexes that are incorporated into the nucleic acid assay development software programs Visual oligonucleotide modeling platform (OMP) and ThermoBLAST.
Journal of Molecular Biology | 2002
Tapan Biswas; Lawrence J. Clos; John SantaLucia; Sankar Mitra; Rabindra Roy
Most DNA glycosylases including N-methylpurine-DNA glycosylase (MPG), which initiate DNA base excision repair, have a wide substrate range of damaged or altered bases in duplex DNA. In contrast, uracil-DNA glycosylase (UDG) is specific for uracil and excises it from both single-stranded and duplex DNAs. Here we show by DNA footprinting analysis that MPG, but not UDG, bound to base-pair mismatches especially to less stable pyrimidine-pyrimidine pairs, without catalyzing detectable base cleavage. Thermal denaturation studies of these normal and damaged (e.g. 1,N(6)-ethenoadenine, varepsilonA) base mispairs indicate that duplex instability rather than exact fit of the flipped out damaged base in the catalytic pocket is a major determinant in the initial recognition of damage by MPG. Finally, based on our determination of binding affinity and catalytic efficiency we conclude that the initial recognition of substrate base lesions by MPG is dependent on the ease of flipping of the base from unstable pairs to a flexible catalytic pocket.
Journal of Molecular Biology | 2008
Ashesh Saraiya; Tek N. Lamichhane; Christine S. Chow; John SantaLucia; Philip R. Cunningham
The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.
Biopolymers | 2012
Minako Sumita; Jun Jiang; John SantaLucia; Christine S. Chow
The helix 69 (H69) region of the large subunit (28S) ribosomal RNA (rRNA) of Homo sapiens contains five pseudouridine (Ψ) residues out of 19 total nucleotides, three of which are highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine in double-stranded (stem) regions. These results were compared with previous hairpin (stem plus single-stranded loop) studies to understand the contributions of the loop sequences to H69 structure and stability. The role of a loop nucleotide substitution from an A in bacteria (position 1918 in Escherichia coli 23S rRNA) to a G in eukaryotes (position 3734 in H. sapiens 28S rRNA) was examined. Thermodynamic parameters for the duplex RNAs were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by circular dichroism spectroscopy. The overall folded structure of human H69 appears to be similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved; however, our results reveal subtle differences in structure and stability between the bacterial and human H69 RNAs in both the stem and loop regions. These findings may be significant with respect to H69 as a potential drug target site.
Nucleosides, Nucleotides & Nucleic Acids | 2002
Rostem J. Irani; John SantaLucia
ABSTRACT Rotation of a heterocyclic base around a glycosidic bond allows the formation of syn and anti conformations in nucleosides. The syn conformation has been observed primarily in purine-purine mismatches in DNA duplexes. Such mismatches give rise to false positive oligonucleotide hybridization in DNA-based diagnostics. Here we describe the synthesis of an analog of 2′-deoxyadenosine that retains its Watson-Crick functional groups, but cannot form the syn conformation. In this analog, the N3 atom of 2′-deoxyadenosine is replaced by a C-CH3 group to give 7-methyl-1-β-D-deoxyribofuranosyl-1H-imidazo[4,5-c]pyridin-4-ylamine or 3-methyl-3-deaza-2′-deoxyadenosine (3mddA). This modification sterically prevents the syn conformation and 3mddA becomes an anti-fixed nucleoside analog of 2′-deoxyadenosine. The synthesis and conformational analysis of 3mddA and several analogs with an 3H-imidazo[4,5-c]pyridine skeleton are described, as well as their potential applications.