Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Shanklin is active.

Publication


Featured researches published by John Shanklin.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A fatty acid desaturase modulates the activation of defense signaling pathways in plants

Pradeep Kachroo; John Shanklin; Jyoti Shah; Edward Whittle; Daniel F. Klessig

Salicylic acid (SA) plays an important role in activating various plant defense responses, including expression of the pathogenesis-related (PR) genes and systemic acquired resistance. A critical positive regulator of the SA signaling pathway in Arabidopsis is encoded by the NPR1 gene. However, there is growing evidence that NPR1-independent pathways can also activate PR expression and disease resistance. To elucidate the components associated with NPR1-independent defense signaling, we isolated a suppressor of the npr1–5 allele, designated ssi2. The recessive ssi2 mutation confers constitutive PR gene expression, spontaneous lesion formation, and enhanced resistance to Peronospora parasitica. In contrast, a subset of defense responses regulated by the jasmonic acid (JA) signaling pathway, including expression of the defensin gene PDF1.2 and resistance to Botrytis cinerea, is impaired in ssi2 plants. With the use of a map-based approach, the SSI2 gene was cloned and shown to encode a stearoyl-ACP desaturase (S-ACP DES). S-ACP DES is an archetypical member of a family of soluble fatty acid (FA) desaturases; these enzymes play an important role in regulating the overall level of desaturated FAs in the cell. The activity of mutant S-ACP DES enzyme was reduced 10-fold, resulting in elevation of the 18:0 FA content in ssi2 plants. Because reduced S-ACP DES activity leads to the induction of certain defense responses and the inhibition of others, we propose that a FA-derived signal modulates crosstalk between different defense signaling pathways.


The Plant Cell | 1995

The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease.

John Shanklin; Natalie D. DeWitt; John M. Flanagan

A cDNA representing the plastid-encoded homolog of the prokaryotic ATP-dependent protease ClpP was amplified by reverse transcription-polymerase chain reaction, cloned, and sequenced. ClpP and a previously isolated cDNA designated ClpC, encoding an ATPase related to proteins encoded by the ClpA/B gene family, were expressed in Escherichia coli. Antibodies directed against these recombinant proteins recognized proteins in a wide variety of organisms. N-terminal analysis of the Clp protein isolated from crude leaf extracts showed that the N-terminal methionine is absent from ClpP and that the transit peptide is cleaved from ClpC. A combination of chloroplast subfractionation and immunolocalization showed that in Arabidopsis, ClpP and ClpC localize to the stroma of the plastid. Immunoblot analyses indicated that ClpP and ClpC are constitutively expressed in all tissues of Arabidopsis at levels equivalent to those of E. coli ClpP and ClpA. ClpP, immunopurified from tobacco extracts, hydrolyzed N-succinyl-Leu-Tyr-amidomethylcoumarin, a substrate of E. coli ClpP. Purified recombinant ClpC facilitated the degradation of 3H-methylcasein by E. coli ClpP in an ATP-dependent fashion. This demonstrates that ClpC is a functional homolog of E. coli ClpA and not of ClpB or ClpX. These data represent the only in vitro demonstration of the activity of a specific ATP-dependent chloroplast protease reported to date.


BMC Plant Biology | 2007

Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach

Kimberly M. Mayer; John Shanklin

BackgroundThe large amount of available sequence information for the plant acyl-ACP thioesterases (TEs) made it possible to use a bioinformatics-guided approach to identify amino acid residues involved in substrate specificity. The Conserved Property Difference Locator (CPDL) program allowed the identification of putative specificity-determining residues that differ between the FatA and FatB TE classes. Six of the FatA residue differences identified by CPDL were incorporated into the FatB-like parent via site-directed mutagenesis and the effect of each on TE activity was determined. Variants were expressed in E. coli strain K27 that allows determination of enzyme activity by GCMS analysis of fatty acids released into the medium.ResultsSubstitutions at four of the positions (74, 86, 141, and 174) changed substrate specificity to varying degrees while changes at the remaining two positions, 110 and 221, essentially inactivated the thioesterase. The effects of substitutions at positions 74, 141, and 174 (3-MUT) or 74, 86, 141, 174 (4-MUT) were not additive with respect to specificity.ConclusionFour of six putative specificity determining positions in plant TEs, identified with the use of CPDL, were validated experimentally; a novel colorimetric screen that discriminates between active and inactive TEs is also presented.


Plant and Cell Physiology | 2012

Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii

Jilian Fan; Chengshi Yan; Carl Andre; John Shanklin; Jörg Schwender; Changcheng Xu

Microalgal oils have attracted much interest as potential feedstocks for renewable fuels, yet our understanding of the regulatory mechanisms controlling oil biosynthesis and storage in microalgae is rather limited. Using Chlamydomonas reinhardtii as a model system, we show here that starch, rather than oil, is the dominant storage sink for reduced carbon under a wide variety of conditions. In short-term treatments, significant amounts of oil were found to be accumulated concomitantly with starch only under conditions of N starvation, as expected, or in cells cultured with high acetate in otherwise standard growth medium. Time-course analysis revealed that oil accumulation under N starvation lags behind that of starch and rapid oil synthesis occurs only when carbon supply exceeds the capacity of starch synthesis. In the starchless mutant BAFJ5, blocking starch synthesis results in significant increases in the extent and rate of oil accumulation. In the parental strain, but not the starchless mutant, oil accumulation under N starvation was strictly dependent on the available external acetate supply and the amount of oil increased steadily as the acetate concentration increased to the levels several-fold higher than that of the standard growth medium. Additionally, oil accumulation under N starvation is saturated at low light intensities and appears to be largely independent of de novo protein synthesis. Collectively, our results suggest that carbon availability is a key metabolic factor controlling oil biosynthesis and carbon partitioning between starch and oil in Chlamydomonas.


Plant Molecular Biology | 2006

The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis.

Aardra Kachroo; John Shanklin; Edward Whittle; Ludmila Lapchyk; David F. Hildebrand; Pradeep Kachroo

In plants, changes in the levels of oleic acid (18:1), a major monounsaturated fatty acid (FA), results in the alteration of salicylic acid (SA)- and jasmonic acid (JA)-mediated defense responses. This is evident in the Arabidopsisssi2/fab2 mutant, which encodes a defective stearoyl-acyl carrier protein-desaturase (S-ACP-DES) and consequently accumulates high levels of stearic acid (18:0) and low levels of 18:1. In addition to SSI2, the Arabidopsis genome encodes six S-ACP-DES-like enzymes, the native expression levels of which are unable to compensate for a loss-of-function mutation in ssi2. The presence of low levels of 18:1 in the fab2 null mutant indicates that one or more S-ACP-DES isozymes contribute to the 18:1 pool. Biochemical assays show that in addition to SSI2, four other isozymes are capable of desaturating 18:0-ACP but with greatly reduced specific activities, which likely explains the inability of these SSI2 isozymes to substitute for a defective ssi2. Lines containing T-DNA insertions in S-ACP-DES1 and S-ACP-DES4 show that they are altered in their lipid profile but contain normal 18:1 levels. However, overexpression of the S-ACP-DES1 isoform in ssi2 plants results in restoration of 18:1 levels and thereby rescues all ssi2-associated phenotypes. Thus, high expression of a low specific activity S-ACP-DES is required to compensate for a mutation in ssi2. Transcript level of S-ACP-DES isoforms is reduced in high 18:1-containing plants. Enzyme activities of the desaturase isoforms in a 5-fold excess of 18:1-ACP show product inhibition of up to 73%. Together these data indicate that 18:1 levels are regulated at both transcriptional and post-translational levels.


The EMBO Journal | 1989

Expression of a functional monocotyledonous phytochrome in transgenic tobacco

Janis M. Keller; John Shanklin; Richard D. Vierstra; Howard P. Hershey

A chimeric oat phytochrome structural gene with an uninterrupted coding region was constructed for expression of the monocot protein in transgenic plants. The structural gene was placed under the transcriptional control of either a light‐regulated oat phytochrome promoter or the constitutively active cauliflower mosaic virus 35S promoter. These genes were then introduced into Nicotiana tabacum and N.plumbaginifolia. None of the regenerated plants showed expression of oat phytochrome RNA when transcription was controlled by the oat promoter. In contrast, RNA was obtained in plants when the structural gene was functionally linked to the 35S promoter. Transformants expressing oat phytochrome RNA produced a full length 124‐kd polypeptide that was recognized by oat‐specific anti‐phytochrome monoclonal antibodies. The oat protein was a substrate for chromophore addition in tobacco as judged by its red/far‐red photoreversible sensitivity to trypsin degradation. Production of oat phytochrome in transgenic plants gave rise to increased phytochrome spectral activity in both light‐ and dark‐grown plants. This increased phytochrome content resulted in phenotypic changes in transformed plants, including semi‐dwarfism, darker green leaves, increased tillering and reduced apical dominance. The possible significance of expressing a biologically active phytochrome in transgenic plants is discussed.


The Plant Cell | 2011

Defective Pollen Wall Is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase

Jing Shi; Hexin Tan; Xiao Hong Yu; Yuanyun Liu; Wanqi Liang; Kosala Ranathunge; Rochus Franke; Lukas Schreiber; Yujiong Wang; Guoying Kai; John Shanklin; Hong Ma; Dabing Zhang

A rice male-sterile mutant, defective pollen wall (dpw), which has defective anthers and pollen grains, is isolated and characterized. DPW is found to encode a fatty acyl carrier protein reductase that is active during the synthesis of the anther cuticle and pollen sporopollenin. Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.


Journal of Biological Chemistry | 2009

Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes.

John Shanklin; Jodie E. Guy; Girish Mishra; Ylva Lindqvist

Desaturases and related enzymes perform O2-dependent dehydrogenations initiated at unactivated C-H groups with the use of a diiron active site. Determination of the long-sought oxidized desaturase crystal structure facilitated structural comparison of the active sites of disparate diiron enzymes. Experiments on the castor desaturase are discussed that provide experimental support for a hypothesized ancestral oxidase enzyme in the context of the evolution of the diiron enzyme diverse functionality. We also summarize recent analysis of a castor mutant desaturase that provides valuable insights into the relationship of proposed substrate-binding modes with respect to a range of catalytic outcomes.


Plant Physiology | 2011

Male Sterile2 Encodes a Plastid-Localized Fatty Acyl Carrier Protein Reductase Required for Pollen Exine Development in Arabidopsis

Weiwei Chen; Xiao-Hong Yu; Kaisi Zhang; Jianxin Shi; Sheron De Oliveira; Lukas Schreiber; John Shanklin; Dabing Zhang

Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30°C), MS2 exhibits a Km for 16:0-Acyl Carrier Protein of 23.3 ± 4.0 μm, a Vmax of 38.3 ± 4.5 nmol mg−1 min−1, and a catalytic efficiency/Km of 1,873 m−1 s−1. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil

Mark S. Pidkowich; Huu Tam Nguyen; Ingo Heilmann; Till Ischebeck; John Shanklin

β-Ketoacyl-acyl carrier protein (ACP) synthase II (KASII) elongates 16:0-ACP to 18:0-ACP in the plastid, where it competes with three other enzymes at the first major branch point in fatty acid biosynthesis. Despite its key metabolic location, the influence of KASII in determining seed oil composition remains unclear, in part because the biochemical consequences of the fab1-1 mutation were unresolved. Thus, fab1-1, and a newly identified knockout allele, fab1-2, were analyzed in the context of the hypothesis that modulating KASII activity is sufficient to convert the composition of a temperate seed oil into that of a palm-like tropical oil. No homozygous fab1-2 individuals were identified in progeny of self-fertilized heterozygous fab1-2 plants, ≈1/4 of which aborted before the torpedo stage, suggesting that fab1-2 represents a complete loss of function and results in lethality when homozygous. Consistent with this hypothesis, homozygous fab1-2 plants were identified when a fab1-1 transgene was introduced, demonstrating that fab1-1 encodes an active KASII. Strong seed-specific hairpin-RNAi reductions in FAB1 expression resulted in abortion of ≈1/4 of the embryos in an apparent phenocopy of fab1-2 homozygosity. In less severe FAB1 hairpin-RNAi individuals, embryos developed normally and exhibited a 1:2:1 segregation ratio for palmitate accumulation. Thus, early embryo development appears sensitive to elevated 16:0, whereas at later stages, up to 53% of 16:0, i.e., a 7-fold increase over wild-type levels, is tolerated. These results resolve the role of KASII in seed metabolism and demonstrate that modulation of Arabidopsis KASII levels is sufficient to convert its temperate oilseed composition to that of a palm-like tropical oil.

Collaboration


Dive into the John Shanklin's collaboration.

Top Co-Authors

Avatar

Edward Whittle

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edgar B. Cahoon

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian G. Fox

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Changcheng Xu

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hui Liu

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John B. Ohlrogge

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Richard D. Vierstra

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge