Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Slattery is active.

Publication


Featured researches published by John Slattery.


Neuroscience & Biobehavioral Reviews | 2015

Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review.

Deepmala; John Slattery; Nihit Kumar; Leanna Delhey; Michael Berk; Olivia M. Dean; Charles Spielholz; Richard E. Frye

N-acetylcysteine (NAC) is recognized for its role in acetaminophen overdose and as a mucolytic. Over the past decade, there has been growing evidence for the use of NAC in treating psychiatric and neurological disorders, considering its role in attenuating pathophysiological processes associated with these disorders, including oxidative stress, apoptosis, mitochondrial dysfunction, neuroinflammation and glutamate and dopamine dysregulation. In this systematic review we find favorable evidence for the use of NAC in several psychiatric and neurological disorders, particularly autism, Alzheimers disease, cocaine and cannabis addiction, bipolar disorder, depression, trichotillomania, nail biting, skin picking, obsessive-compulsive disorder, schizophrenia, drug-induced neuropathy and progressive myoclonic epilepsy. Disorders such as anxiety, attention deficit hyperactivity disorder and mild traumatic brain injury have preliminary evidence and require larger confirmatory studies while current evidence does not support the use of NAC in gambling, methamphetamine and nicotine addictions and amyotrophic lateral sclerosis. Overall, NAC treatment appears to be safe and tolerable. Further well designed, larger controlled trials are needed for specific psychiatric and neurological disorders where the evidence is favorable.


PLOS ONE | 2014

Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort.

Shannon Rose; Richard E. Frye; John Slattery; Rebecca Wynne; Marie Tippett; Oleksandra Pavliv; Stepan Melnyk; S. Jill James

There is increasing recognition that mitochondrial dysfunction is associated with the autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction or how mitochondrial abnormalities might interact with other physiological disturbances associated with autism, such as oxidative stress. In the current study we used respirometry to examine reserve capacity, a measure of the mitochondrial ability to respond to physiological stress, in lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) as well as age and gender-matched control LCLs. We demonstrate, for the first time, that LCLs derived from children with AD have an abnormal mitochondrial reserve capacity before and after exposure to increasingly higher concentrations of 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases intracellular reactive oxygen species (ROS). Specifically, the AD LCLs exhibit a higher reserve capacity at baseline and a sharper depletion of reserve capacity when ROS exposure is increased, as compared to control LCLs. Detailed investigation indicated that reserve capacity abnormalities seen in AD LCLs were the result of higher ATP-linked respiration and maximal respiratory capacity at baseline combined with a marked increase in proton leak respiration as ROS was increased. We further demonstrate that these reserve capacity abnormalities are driven by a subgroup of eight (32%) of 25 AD LCLs. Additional investigation of this subgroup of AD LCLs with reserve capacity abnormalities revealed that it demonstrated a greater reliance on glycolysis and on uncoupling protein 2 to regulate oxidative stress at the inner mitochondria membrane. This study suggests that a significant subgroup of AD children may have alterations in mitochondrial function which could render them more vulnerable to a pro-oxidant microenvironment derived from intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxicants. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.


Microbial Ecology in Health and Disease | 2015

Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome

Richard E. Frye; Shannon Rose; John Slattery; Derrick F. MacFabe

Autism spectrum disorder (ASD) affects a significant number of individuals worldwide with the prevalence continuing to grow. It is becoming clear that a large subgroup of individuals with ASD demonstrate abnormalities in mitochondrial function as well as gastrointestinal (GI) symptoms. Interestingly, GI disturbances are common in individuals with mitochondrial disorders and have been reported to be highly prevalent in individuals with co-occurring ASD and mitochondrial disease. The majority of individuals with ASD and mitochondrial disorders do not manifest a primary genetic mutation, raising the possibility that their mitochondrial disorder is acquired or, at least, results from a combination of genetic susceptibility interacting with a wide range of environmental triggers. Mitochondria are very sensitive to both endogenous and exogenous environmental stressors such as toxicants, iatrogenic medications, immune activation, and metabolic disturbances. Many of these same environmental stressors have been associated with ASD, suggesting that the mitochondria could be the biological link between environmental stressors and neurometabolic abnormalities associated with ASD. This paper reviews the possible links between GI abnormalities, mitochondria, and ASD. First, we review the link between GI symptoms and abnormalities in mitochondrial function. Second, we review the evidence supporting the notion that environmental stressors linked to ASD can also adversely affect both mitochondria and GI function. Third, we review the evidence that enteric bacteria that are overrepresented in children with ASD, particularly Clostridia spp., produce short-chain fatty acid metabolites that are potentially toxic to the mitochondria. We provide an example of this gut–brain connection by highlighting the propionic acid rodent model of ASD and the clinical evidence that supports this animal model. Lastly, we discuss the potential therapeutic approaches that could be helpful for GI symptoms in ASD and mitochondrial disorders. To this end, this review aims to help better understand the underlying pathophysiology associated with ASD that may be related to concurrent mitochondrial and GI dysfunction.


Translational Psychiatry | 2014

Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines.

Shannon Rose; Richard E. Frye; John Slattery; Rebecca Wynne; Marie Tippett; S Melnyk; S J James

There is an increasing recognition that mitochondrial dysfunction is associated with autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction and how mitochondrial abnormalities might interact with other physiological disturbances such as oxidative stress. Reserve capacity is a measure of the ability of the mitochondria to respond to physiological stress. In this study, we demonstrate, for the first time, that lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) have an abnormal mitochondrial reserve capacity before and after exposure to reactive oxygen species (ROS). Ten (44%) of 22 AD LCLs exhibited abnormally high reserve capacity at baseline and a sharp depletion of reserve capacity when challenged with ROS. This depletion of reserve capacity was found to be directly related to an atypical simultaneous increase in both proton-leak respiration and adenosine triphosphate-linked respiration in response to increased ROS in this AD LCL subgroup. In this AD LCL subgroup, 48-hour pretreatment with N-acetylcysteine, a glutathione precursor, prevented these abnormalities and improved glutathione metabolism, suggesting a role for altered glutathione metabolism associated with this type of mitochondrial dysfunction. The results of this study suggest that a significant subgroup of AD children may have alterations in mitochondrial function, which could render them more vulnerable to a pro-oxidant microenvironment as well as intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxins. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.


Frontiers in Public Health | 2013

A review of traditional and novel treatments for seizures in autism spectrum disorder: findings from a systematic review and expert panel

Richard E. Frye; Daniel A. Rossignol; Manuel F. Casanova; Gregory L. Brown; Victoria Martin; Stephen M. Edelson; Robert Coben; Jeffrey David Lewine; John Slattery; Chrystal Lau; Paul Hardy; S. Hossein Fatemi; Timothy D. Folsom; Derrick F. MacFabe; James B. Adams

Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases and by a panel of experts that treat ASD individuals. Only a few anti-epileptic drugs (AEDs) have undergone carefully controlled trials in ASD, but these trials examined outcomes other than seizures. Several lines of evidence point to valproate, lamotrigine, and levetiracetam as the most effective and tolerable AEDs for individuals with ASD. Limited evidence supports the use of traditional non-AED treatments, such as the ketogenic and modified Atkins diet, multiple subpial transections, immunomodulation, and neurofeedback treatments. Although specific treatments may be more appropriate for specific genetic and metabolic syndromes associated with ASD and seizures, there are few studies which have documented the effectiveness of treatments for seizures for specific syndromes. Limited evidence supports l-carnitine, multivitamins, and N-acetyl-l-cysteine in mitochondrial disease and dysfunction, folinic acid in cerebral folate abnormalities and early treatment with vigabatrin in tuberous sclerosis complex. Finally, there is limited evidence for a number of novel treatments, particularly magnesium with pyridoxine, omega-3 fatty acids, the gluten-free casein-free diet, and low-frequency repetitive transcranial magnetic simulation. Zinc and l-carnosine are potential novel treatments supported by basic research but not clinical studies. This review demonstrates the wide variety of treatments used to treat seizures in individuals with ASD as well as the striking lack of clinical trials performed to support the use of these treatments. Additional studies concerning these treatments for controlling seizures in individuals with ASD are warranted.


Microbial Ecology in Health and Disease | 2015

Approaches to studying and manipulating the enteric microbiome to improve autism symptoms

Richard E. Frye; John Slattery; Derrick F. MacFabe; Emma Allen-Vercoe; William Parker; John Rodakis; James B. Adams; Rosa Krajmalnik-Brown; Ellen Bolte; Stephen G. Kahler; Jana Jennings; Jill James; Carl E. Cerniglia; Tore Midtvedt

There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms. One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.


Molecular Psychiatry | 2018

Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial

Richard E. Frye; John Slattery; Leanna Delhey; B Furgerson; T Strickland; Marie Tippett; A Sailey; Rebecca Wynne; Shannon Rose; S Melnyk; S Jill James; J M Sequeira; E V Quadros

We sought to determine whether high-dose folinic acid improves verbal communication in children with non-syndromic autism spectrum disorder (ASD) and language impairment in a double-blind placebo control setting. Forty-eight children (mean age 7 years 4  months; 82% male) with ASD and language impairment were randomized to receive 12 weeks of high-dose folinic acid (2 mg kg−1 per day, maximum 50 mg per day; n=23) or placebo (n=25). Children were subtyped by glutathione and folate receptor-α autoantibody (FRAA) status. Improvement in verbal communication, as measured by a ability-appropriate standardized instrument, was significantly greater in participants receiving folinic acid as compared with those receiving placebo, resulting in an effect of 5.7 (1.0,10.4) standardized points with a medium-to-large effect size (Cohen’s d=0.70). FRAA status was predictive of response to treatment. For FRAA-positive participants, improvement in verbal communication was significantly greater in those receiving folinic acid as compared with those receiving placebo, resulting in an effect of 7.3 (1.4,13.2) standardized points with a large effect size (Cohen’s d=0.91), indicating that folinic acid treatment may be more efficacious in children with ASD who are FRAA positive. Improvements in subscales of the Vineland Adaptive Behavior Scale, the Aberrant Behavior Checklist, the Autism Symptom Questionnaire and the Behavioral Assessment System for Children were significantly greater in the folinic acid group as compared with the placebo group. There was no significant difference in adverse effects between treatment groups. Thus, in this small trial of children with non-syndromic ASD and language impairment, treatment with high-dose folinic acid for 12 weeks resulted in improvement in verbal communication as compared with placebo, particularly in those participants who were positive for FRAAs.


Frontiers in Neuroscience | 2016

Blocking and Binding Folate Receptor Alpha Autoantibodies Identify Novel Autism Spectrum Disorder Subgroups

Richard E. Frye; Leanna Delhey; John Slattery; Marie Tippett; Rebecca Wynne; Shannon Rose; Stephen G. Kahler; Sirish C. Bennuri; Stepan Melnyk; Jeffrey M. Sequeira; Edward V. Quadros

Folate receptor α (FRα) autoantibodies (FRAAs) are prevalent in autism spectrum disorder (ASD). They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD and FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristics. Thus, in this study we measured both blocking and binding FRAAs, physiological measurements including indices of redox and methylation metabolism and inflammation as well as serum folate and B12 concentrations and measurements of development and behavior in 94 children with ASD. Children positive for the binding FRAA were found to have higher serum B12 levels as compared to those negative for binding FRAAs while children positive for the blocking FRAA were found to have relatively better redox metabolism and inflammation markers as compared to those negative for blocking FRAAs. In addition, ASD children positive for the blocking FRAA demonstrated better communication on the Vineland Adaptive Behavior Scale, stereotyped behavior on the Aberrant Behavioral Checklist and mannerisms on the Social Responsiveness Scale. This study suggests that FRAAs are associated with specific physiological and behavioral characteristics in children with ASD and provides support for the notion that these biomarkers may be useful for subgrouping children with ASD, especially with respect to targeted treatments.


Frontiers in Neuroscience | 2016

Neuropathological mechanisms of seizures in autism spectrum disorder

Richard E. Frye; Manuel F. Casanova; S. Hossein Fatemi; Timothy D. Folsom; Teri J. Reutiman; Gregory L. Brown; Stephen M. Edelson; John Slattery; James B. Adams

This manuscript reviews biological abnormalities shared by autism spectrum disorder (ASD) and epilepsy. Two neuropathological findings are shared by ASD and epilepsy: abnormalities in minicolumn architecture and γ-aminobutyric acid (GABA) neurotransmission. The peripheral neuropil, which is the region that contains the inhibition circuits of the minicolumns, has been found to be decreased in the post-mortem ASD brain. ASD and epilepsy are associated with inhibitory GABA neurotransmission abnormalities including reduced GABAA and GABAB subunit expression. These abnormalities can elevate the excitation-to-inhibition balance, resulting in hyperexcitablity of the cortex and, in turn, increase the risk of seizures. Medical abnormalities associated with both epilepsy and ASD are discussed. These include specific genetic syndromes, specific metabolic disorders including disorders of energy metabolism and GABA and glutamate neurotransmission, mineral and vitamin deficiencies, heavy metal exposures and immune dysfunction. Many of these medical abnormalities can result in an elevation of the excitatory-to-inhibitory balance. Fragile X is linked to dysfunction of the mGluR5 receptor and Fragile X, Angelman and Rett syndromes are linked to a reduction in GABAA receptor expression. Defects in energy metabolism can reduce GABA interneuron function. Both pyridoxine dependent seizures and succinic semialdehyde dehydrogenase deficiency cause GABA deficiencies while urea cycle defects and phenylketonuria cause abnormalities in glutamate neurotransmission. Mineral deficiencies can cause glutamate and GABA neurotransmission abnormalities and heavy metals can cause mitochondrial dysfunction which disrupts GABA metabolism. Thus, both ASD and epilepsy are associated with similar abnormalities that may alter the excitatory-to-inhibitory balance of the cortex. These parallels may explain the high prevalence of epilepsy in ASD and the elevated prevalence of ASD features in individuals with epilepsy.


Clinical Medicine Insights: Pediatrics | 2016

The Significance of the Enteric Microbiome on the Development of Childhood Disease: A Review of Prebiotic and Probiotic Therapies in Disorders of Childhood

John Slattery; Derrick F. MacFabe; Richard E. Frye

Recent studies have highlighted the fact that the enteric microbiome, the trillions of microbes that inhabit the human digestive tract, has a significant effect on health and disease. Methods for manipulating the enteric microbiome, particularly through probiotics and microbial ecosystem transplantation, have undergone some study in clinical trials. We review some of the evidence for microbiome alteration in relation to childhood disease and discuss the clinical trials that have examined the manipulation of the microbiome in an effort to prevent or treat childhood disease with a primary focus on probiotics, prebiotics, and/or synbiotics (ie, probiotics + prebiotics). Studies show that alterations in the microbiome may be a consequence of events occurring during infancy and/or childhood such as prematurity, C-sections, and nosocomial infections. In addition, certain childhood diseases have been associated with microbiome alterations, namely necrotizing enterocolitis, infantile colic, asthma, atopic disease, gastrointestinal disease, diabetes, malnutrition, mood/anxiety disorders, and autism spectrum disorders. Treatment studies suggest that probiotics are potentially protective against the development of some of these diseases. Timing and duration of treatment, the optimal probiotic strain(s), and factors that may alter the composition and function of the microbiome are still in need of further research. Other treatments such as prebiotics, fecal microbial transplantation, and antibiotics have limited evidence. Future translational work, in vitro models, long-term and follow-up studies, and guidelines for the composition and viability of probiotic and microbial therapies need to be developed. Overall, there is promising evidence that manipulating the microbiome with probiotics early in life can help prevent or reduce the severity of some childhood diseases, but further research is needed to elucidate biological mechanisms and determine optimal treatments.

Collaboration


Dive into the John Slattery's collaboration.

Top Co-Authors

Avatar

Richard E. Frye

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Marie Tippett

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shannon Rose

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Leanna Delhey

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Stephen G. Kahler

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Rebecca Wynne

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sirish C. Bennuri

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Derrick F. MacFabe

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

S Melnyk

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Jill James

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge