John Spink
Teagasc
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Spink.
Trends in Plant Science | 2014
Aoife O’Driscoll; Steven Kildea; Fiona M. Doohan; John Spink; Ewen Mullins
In the utopic absence of abiotic and/or biotic stressors, attaining the predicted increase (up to 70%) in wheat demand by 2050 in response to global population trends is a challenge. This objective becomes daunting, however, when one factors in the continuous constraint on global wheat production posed by Septoria tritici blotch (STB) disease. This is because, despite resistant loci being identified, a deficit of commercially relevant STB-resistant wheat germplasm remains. The issue is further compounded for growers by the emergence and prevalence of fungicide-resistant/insensitive strains of the causative pathogen Zymoseptoria tritici (formerly known as Mycosphaerella graminicola/Septoria tritici). However, biotechnology-based research is providing new opportunities in this struggle. As the exome response of wheat to STB attack begins to be deciphered, genes intrinsic to resistant and susceptible phenotypes will be identified. Combined with the application of genome-editing techniques and a growing appreciation of the complexity of wheats and the dynamism of Z. triticis genome, the generation of resulting STB-resistant wheat varieties will counter the prevalent threat of STB disease in wheat-production systems.
Pest Management Science | 2016
Hilda Dooley; M. W. Shaw; Jeanne Mehenni-Ciz; John Spink; Steven Kildea
BACKGROUND Succinate dehydrogenase inhibitor (SDHI) fungicides are important in the management of Zymoseptoria tritici in wheat. New active ingredients from this group of fungicides have been introduced recently and are widely used. Because the fungicides act at a single enzyme site, resistance development in Z. tritici is classified as medium-to-high risk. RESULTS Isolates from Irish experimental plots in 2015 were tested against the SDHI penthiopyrad during routine monitoring. The median of the population was approximately 2 times less sensitive than the median of the baseline population. Two of the 93 isolates were much less sensitive to penthiopyrad than the least sensitive of the baseline isolates. These isolates were also insensitive to most commercially available SDHIs. Analysis of the succinate dehydrogenase coding genes confirmed the presence of the substitutions SdhC-H152R and SdhD-R47W in the very insensitive isolates. CONCLUSION This is the first report showing that the SdhC-H152R mutation detected in laboratory mutagenesis studies also exists in the field. The function and relevance of this mutation, combined with SdhD-R47W, still needs to be determined.
Pest Management Science | 2016
Hilda Dooley; M. W. Shaw; John Spink; Steven Kildea
BACKGROUND Combining fungicides with different modes of action is regarded as one of the most effective means of slowing the selection of resistance. Field trials were used to study the effects of such mixtures on selection for Zymoseptoria tritici with reduced sensitivity to the succinate dehydrogenase inhibitors (SDHIs) and azole fungicides. The SDHI isopyrazam and the azole epoxiconazole were applied individually as solo products, and together in a preformulated mixture. All fungicide treatments were included at both full and half the recommended doses. RESULTS Compared with using epoxiconazole alone, mixing epoxiconazole with isopyrazam led to an increase in epoxiconazole-sensitive isolates. In contrast, all treatments containing isopyrazam reduced the sensitivity of Z. tritici to isopyrazam compared with those without. Reducing doses to half the recommended rate had no effect on sensitivity of isolates to either active ingredient. In a subgroup of isolates least sensitive to isopyrazam, non-synonymous mutations were found in the SdhC and SdhD subunits, but their presence was unrelated to sensitivity. CONCLUSION Mixing an azole and SDHI was clearly beneficial for the azole, but not for the SDHI component. This dynamic might change if strains conferring reduced sensitivity to the SDHIs were to arise.
Pest Management Science | 2015
Hilda Dooley; M. W. Shaw; John Spink; Steven Kildea
BACKGROUND Combining fungicides with different modes of action is regarded as one of the most effective means of slowing the selection of resistance. Field trials were used to study the effects of such mixtures on selection for Zymoseptoria tritici with reduced sensitivity to the succinate dehydrogenase inhibitors (SDHIs) and azole fungicides. The SDHI isopyrazam and the azole epoxiconazole were applied individually as solo products, and together in a preformulated mixture. All fungicide treatments were included at both full and half the recommended doses. RESULTS Compared with using epoxiconazole alone, mixing epoxiconazole with isopyrazam led to an increase in epoxiconazole-sensitive isolates. In contrast, all treatments containing isopyrazam reduced the sensitivity of Z. tritici to isopyrazam compared with those without. Reducing doses to half the recommended rate had no effect on sensitivity of isolates to either active ingredient. In a subgroup of isolates least sensitive to isopyrazam, non-synonymous mutations were found in the SdhC and SdhD subunits, but their presence was unrelated to sensitivity. CONCLUSION Mixing an azole and SDHI was clearly beneficial for the azole, but not for the SDHI component. This dynamic might change if strains conferring reduced sensitivity to the SDHIs were to arise.
Frontiers in Plant Science | 2017
Richard D. Lally; Paul T. Galbally; António S. Moreira; John Spink; David Ryan; Kieran J. Germaine; David N. Dowling
Plant associated bacteria with plant growth promotion (PGP) properties have been proposed for use as environmentally friendly biofertilizers for sustainable agriculture; however, analysis of their efficacy in the field is often limited. In this study, greenhouse and field trials were carried out using individual endophytic Pseudomonas fluorescens strains, the well characterized rhizospheric P. fluorescens F113 and an endophytic microbial consortium of 10 different strains. These bacteria had been previously characterized with respect to their PGP properties in vitro and had been shown to harbor a range of traits associated with PGP including siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and inorganic phosphate solubilization. In greenhouse experiments individual strains tagged with gfp and Kmr were applied to Brassica napus as a seed coat and were shown to effectively colonize the rhizosphere and root of B. napus and in addition they demonstrated a significant increase in plant biomass compared with the non-inoculated control. In the field experiment, the bacteria (individual and consortium) were spray inoculated to winter oilseed rape B. napus var. Compass which was grown under standard North Western European agronomic conditions. Analysis of the data provides evidence that the application of the live bacterial biofertilizers can enhance aspects of crop development in B. napus at field scale. The field data demonstrated statistically significant increases in crop height, stem/leaf, and pod biomass, particularly, in the case of the consortium inoculated treatment. However, although seed and oil yield were increased in the field in response to inoculation, these data were not statistically significant under the experimental conditions tested. Future field trials will investigate the effectiveness of the inoculants under different agronomic conditions.
Frontiers in Microbiology | 2017
Ridhdhi Rathore; David N. Dowling; Patrick D. Forristal; John Spink; Paul D. Cotter; Davide Bulgarelli; Kieran J. Germaine
Gaining a greater understanding of the plant microbiota and its interactions with its host plant heralds a new era of scientific discovery in agriculture. Different agricultural management practices influence soil microbial populations by changing a soil’s physical, chemical and biological properties. However, the impact of these practices on the microbiota associated with economically important crops such as oilseed rape, are still understudied. In this work we investigated the impact of two contrasting crop establishment practices, conventional (plow based) and conservation (strip–tillage) systems, on the microbiota inhabiting different plant microhabitats, namely rhizosphere, root and shoot, of winter oilseed rape under Irish agronomic conditions. Illumina 16S rRNA gene sequence profiling showed that the plant associated microhabitats (root and shoot), are dominated by members of the bacterial phyla Proteobacteria, Actinobacteria and Bacteroidetes. The root and shoot associated bacterial communities displayed markedly distinct profiles as a result of tillage practices. We observed a very limited ‘rhizosphere effect’ in the root zone of WOSR, i.e., there was little or no increase in bacterial community richness and abundance in the WOSR rhizosphere compared to the bulk soil. The two tillage systems investigated did not appear to lead to any major long term differences on the bulk soil or rhizosphere bacterial communities. Our data suggests that the WOSR root and shoot microbiota can be impacted by management practices and is an important mechanism that could allow us to understand how plants respond to different management practices and environments.
Irish Journal of Agricultural and Food Research | 2016
Arit Efretuei; Michael Gooding; Ethel White; John Spink; Richie Hackett
Abstract The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N) to winter wheat at different growth stages (GSs) on grain yield and N use efficiency (NUE). A factorial experiment was carried out in two growing seasons (2011 and 2012) with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37) and an unfertilized control, two sowing densities (100 and 400 seeds/m2) and a cattle slurry treatment (with or without slurry). The latter was included to simulate variation in soil N supply (SNS). Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.
Irish Journal of Agricultural and Food Research | 2015
Fiona Hutton; John Spink; Denis Griffin; Stephen Kildea; D. Bonner; G. Doherty; A. Hunter
Abstract Virus diseases are of key importance in potato production and in particular for the production of disease-free potato seed. However, there is little known about the frequency and distribution of potato virus diseases in Ireland. Despite a large number of samples being tested each year, the data has never been collated either within or across years. Information from all known potato virus testing carried out in the years 2006–2012 by the Department of Agriculture Food and Marine was collated to give an indication of the distribution and incidence of potato virus in Ireland. It was found that there was significant variation between regions, varieties, years and seed classes. A definition of daily weather data suitable for aphid flight was developed, which accounted for a significant proportion of the variation in virus incidence between years. This use of weather data to predict virus risk could be developed to form the basis of an integrated pest management approach for aphid control in Irish potato crops.
Plant Pathology | 2018
James Gerard Hehir; Cliona Connolly; Aoife O'Driscoll; Joseph P. Lynch; John Spink; J. K. M. Brown; Fiona M. Doohan; Ewen Mullins
Zymoseptoria tritici, the causal agent of septoria tritici blotch (STB), remains a significant threat to European wheat production with the continuous emergence of fungicide resistance in Z. tritici strains eroding the economic sustainability of wheat production systems. The life cycle of Z. tritici is characterised by a pre-symptomatic phase (latent period, LP) after which the pathogen switches to an aggressive necrotrophic stage, when lesions bearing pycnidia quickly manifest on the leaf. As minimal knowledge on the possible role of the LP in supporting STB resistance/susceptibility exists, the goal of this study was to investigate the spatial and temporal association between the LP and disease progression across 3 locations (Ireland – Waterford, Carlow; UK – Norwich) that represent commercially high, medium and low STB pressure environments. Completed over two seasons (2013-2015) with commercially grown cultivars, the potential of the LP in stalling STB epidemics was significant as identified with cv. Stigg, whose high level of partial resistance was characterised by a lengthened LP (~36 days) under the high disease pressure environment of Waterford. However, once the LP concluded it was followed by a rate of disease progression in cv. Stigg that was comparable to that observed in the more susceptible commercial varieties. Complementary analysis via logistic modelling of intensive disease assessments made at Carlow and Waterford in 2015, further highlighted the value of a lengthened LP in supporting strong partial resistance against STB disease of wheat. This article is protected by copyright. All rights reserved.
Irish Journal of Agricultural and Food Research | 2017
J.P. Lynch; Reamonn Fealy; D. Doyle; L. Black; John Spink
Abstract Although Irish winter wheat yields are among the highest globally, increases in the profitability of this crop are required to maintain its economic viability. However, in order to determine if efforts to further increase Irish wheat yields are likely to be successful, an accurate estimation of the yield potential is required for different regions within Ireland. A winter wheat yield potential model (WWYPM) was developed, which estimates the maximum water-limited yield achievable, within the confines of current genetic resources and technologies, using parameters for winter wheat growth and development observed recently in Ireland and a minor amount of daily meteorological input (maximum and minimum daily temperature, total daily rainfall and total daily incident radiation). The WWYPM is composed of three processes: (i) an estimation of potential green area index, (ii) an estimation of light interception and biomass accumulation and (iii) an estimation of biomass partitioning to grain yield. Model validation indicated that WWYPM estimations of water-limited yield potential (YPw) were significantly related to maximum yields recorded in variety evaluation trials as well as regional average and maximum farm yields, reflecting the model’s sensitivity to alterations in the climatic environment with spatial and seasonal variations. Simulations of YPw for long-term average weather data at 12 sites located at spatially contrasting regions of Ireland indicated that the typical YPw varied between 15.6 and 17.9 t/ha, with a mean of 16.7 t/ha at 15% moisture content. These results indicate that the majority of sites in Ireland have the potential to grow high-yielding crops of winter wheat when the effects of very high rainfall and other stresses such as disease incidence and nutrient deficits are not considered.