John Stavrinides
University of Regina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Stavrinides.
PLOS Genetics | 2006
Wenbo Ma; Frederick F. T. Dong; John Stavrinides; David S. Guttman
The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ∼45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range.
Molecular Plant-microbe Interactions | 2005
Magdalen Lindeberg; John Stavrinides; Jeffrey H. Chang; James R. Alfano; Alan Collmer; Jeffery L. Dangl; Jean T. Greenberg; John W. Mansfield; David S. Guttman
Pathovars of Pseudomonas syringae interact with their plant hosts via the action of Hrp outer protein (Hop) effector proteins, injected into plant cells by the type III secretion system (TTSS). Recent availability of complete genome sequences for a number of P. syringae pathovars has led to a significant increase in the rate of effector discovery. However, lack of a systematic nomenclature has resulted in multiple names being assigned to the same Hop, unrelated Hops designated by the same alphabetic character, and failure of name choices to reflect consistent standards of experimental confirmation or phylogenetic relatedness. Therefore, specific experimental and bioinformatic criteria are proposed for proteins to be designated as Hops. A generic Hop name structure, HopXY#pv strain, also is proposed, wherein family membership is indicated by the alphabetic characters, subgroup membership numerically, and source pathovar and strain in subscript. Guidelines are provided for phylogenetic characterization and name selection for Hops that are novel, related to previously characterized Hops, chimeras, pseudogenes, truncations, or nonexpressed alleles. Phylogenetic analyses of previously characterized Hops are described, the results of which have been used to guide their integration into the proposed nomenclature.
Journal of Virology | 2004
John Stavrinides; David S. Guttman
ABSTRACT Severe acute respiratory syndrome (SARS) is a deadly form of pneumonia caused by a novel coronavirus, a viral family responsible for mild respiratory tract infections in a wide variety of animals including humans, pigs, cows, mice, cats, and birds. Analyses to date have been unable to identify the precise origin of the SARS coronavirus. We used Bayesian, neighbor-joining, and split decomposition phylogenetic techniques on the SARS virus replicase, surface spike, matrix, and nucleocapsid proteins to reveal the evolutionary origin of this recently emerging infectious agent. The analyses support a mammalian-like origin for the replicase protein, an avian-like origin for the matrix and nucleocapsid proteins, and a mammalian-avian mosaic origin for the host-determining spike protein. A bootscan recombination analysis of the spike gene revealed high nucleotide identity between the SARS virus and a feline infectious peritonitis virus throughout the gene, except for a 200- base-pair region of high identity to an avian sequence. These data support the phylogenetic analyses and suggest a possible past recombination event between mammalian-like and avian-like parent viruses. This event occurred near a region that has been implicated to be the human receptor binding site and may have been directly responsible for the switch of host of the SARS coronavirus from animals to humans.
PLOS Pathogens | 2006
John Stavrinides; Wenbo Ma; David S. Guttman
Many bacterial pathogens employ a type III secretion system to deliver type III secreted effectors (T3SEs) into host cells, where they interact directly with host substrates to modulate defense pathways and promote disease. This interaction creates intense selective pressures on these secreted effectors, necessitating rapid evolution to overcome host surveillance systems and defenses. Using computational and evolutionary approaches, we have identified numerous mosaic and truncated T3SEs among animal and plant pathogens. We propose that these secreted virulence genes have evolved through a shuffling process we have called “terminal reassortment.” In terminal reassortment, existing T3SE termini are mobilized within the genome, creating random genetic fusions that result in chimeric genes. Up to 32% of T3SE families in species with relatively large and well-characterized T3SE repertoires show evidence of terminal reassortment, as compared to only 7% of non-T3SE families. Terminal reassortment may permit the near instantaneous evolution of new T3SEs and appears responsible for major modifications to effector activity and function. Because this process plays a more significant role in the evolution of T3SEs than non-effectors, it provides insight into the evolutionary origins of T3SEs and may also help explain the rapid emergence of new infectious agents.
Cellular Microbiology | 2007
John Stavrinides; Honour C. McCann; David S. Guttman
Many bacterial pathogens require a type III secretion system (T3SS) and suite of type III secreted effectors (T3SEs) to successfully colonize their hosts, extract nutrients and consequently cause disease. T3SEs, in particular, are key components of the bacterial arsenal, as they function directly inside the host to disrupt or suppress critical components of the defence network. The development of host defence and surveillance systems imposes intense selective pressures on these bacterial virulence factors, resulting in a host–pathogen co‐evolutionary arms race. This arms race leaves its genetic signature in the pattern and structure of natural genetic variation found in T3SEs, thereby permitting us to infer the specific evolutionary processes and pressures driving these interactions. In this review, we summarize our current knowledge of T3SS‐mediated host–pathogen co‐evolution. We examine the evolution of the T3SS and the T3SEs that traverse it, in both plant and animal pathosystems, and discuss the processes that maintain these important pathogenicity determinants within pathogen populations. We go on to examine the possible origins of T3SEs, the mechanisms that give rise to new T3SEs and the processes that underlie their evolution.
Fems Microbiology Reviews | 2011
Geetanchaly Nadarasah; John Stavrinides
Phytopathogens have evolved specialized pathogenicity determinants that enable them to colonize their specific plant hosts and cause disease, but their intimate associations with plants also predispose them to frequent encounters with herbivorous insects, providing these phytopathogens with ample opportunity to colonize and eventually evolve alternative associations with insects. Decades of research have revealed that these associations have resulted in the formation of bacterial-vector relationships, in which the insect mediates dissemination of the plant pathogen. Emerging research, however, has highlighted the ability of plant pathogenic bacteria to use insects as alternative hosts, exploiting them as they would their primary plant host. The identification of specific bacterial genetic determinants that mediate the interaction between bacterium and insect suggests that these interactions are not incidental, but have likely arisen following the repeated association of microorganisms with particular insects over evolutionary time. This review will address the biology and ecology of phytopathogenic bacteria that interact with insects, including the traditional role of insects as vectors, as well as the newly emerging paradigm of insects serving as alternative primary hosts. Also discussed is one case where an insect serves as both host and vector, which may represent a transitionary stage in the evolution of insect-phytopathogen associations.
Molecular Plant-microbe Interactions | 2006
Monica Vencato; Fang Tian; James R. Alfano; C. Robin Buell; Samuel Cartinhour; Genevieve DeClerck; David S. Guttman; John Stavrinides; Vinita Joardar; Magdalen Lindeberg; Philip A. Bronstein; John W. Mansfield; Christopher R. Myers; Alan Collmer; David J. Schneider
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.
Applied and Environmental Microbiology | 2009
John Stavrinides; Jodi K. McCloskey; Howard Ochman
ABSTRACT Aphids are widespread agricultural pests that are capable of disseminating plant viral diseases; however, despite coming into frequent contact with epiphytic bacteria, aphids are considered to have no role in bacterial transmission. Here, we demonstrate the ability of pea aphids to vector the phytopathogen Pseudomonas syringae pv. syringae B728a (PsyB728a). While feeding on plants colonized by epiphytic bacteria, aphids acquire the bacteria, which colonize the digestive tract, multiply, and are excreted in the aphid honeydew, resulting in inoculation of the phyllosphere with up to 107 phytopathogenic bacteria per cm2. Within days of ingesting bacteria, aphids succumb to bacterial sepsis, indicating that aphids serve as an alternative, nonplant host for PsyB728a. The related strain Pseudomonas syringae pv. tomato DC3000 is >1,000-fold less virulent than PsyB728a in the pea aphid, suggesting that PsyB728a possesses strain-specific pathogenicity factors that allow it to exploit aphids as hosts. To identify these factors, we performed a mutagenesis screen and recovered PsyB728a mutants that were hypovirulent, including one defective in a gene required for flagellum formation and motility. These interactions illustrate that aphids can also vector bacterial pathogens and that even seemingly host-restricted pathogens can have alternative host specificities and lifestyles.
Fems Microbiology Reviews | 2015
Alyssa M. Walterson; John Stavrinides
The bacterial genus Pantoea comprises many versatile species that have been isolated from a multitude of environments. Pantoea was delineated as a genus approximately 25 years ago, but since then, approximately 20 species have been identified having a diversity of characteristics. Isolates from water and soil have been harnessed for industrial purposes including bioremediation, and the degradation of herbicides and other toxic products. Other isolates possess nitrogen fixation and plant growth-promoting capabilities, which are currently being explored for agricultural applications. Some isolates are antibiotic producers, and have been developed into biocontrol agents for the management of plant diseases. Pantoea is also known to form host associations with a variety of hosts, including plants, insects and humans. Although often thought of as a plant pathogen, recent evidence suggests that Pantoea is being frequently isolated from the nosocomial environment, with considerable debate as to its role in human disease. This review will explore this highly versatile group and its capabilities, its known associations, and the underlying genetic and genomic determinants that drive its diversity and adaptability.
Journal of Bacteriology | 2004
John Stavrinides; David S. Guttman
Plasmids are transmissible, extrachromosomal genetic elements that are often responsible for environmental or host-specific adaptations. In order to identify the forces driving the evolution of these important molecules, we determined the complete nucleotide sequence of the five-plasmid complement of the radish and Arabidopsis pathogen Pseudomonas syringae pv. maculicola ES4326 and conducted an intraspecific comparative genomic analysis. To date, this is the most complex fully sequenced plasmid complement of any gram-negative bacterium. The plasmid complement comprises two pPT23A-like replicons, pPMA4326A (46,697 bp) and pPMA4326B (40,110 bp); a pPS10-like replicon, pPMA4326C (8,244 bp); and two atypical, replicase-deficient replicons, pPMA4326D (4,833 bp) and pPMA4326E (4,217 bp). A complete type IV secretion system is found on pPMA4326A, while the type III secreted effector hopPmaA is present on pPMA4326B. The region around hopPmaA includes a shorter hopPmaA homolog, insertion sequence (IS) elements, and a three-element cassette composed of a resolvase, an integrase, and an exeA gene that is also present in several human pathogens. We have also identified a novel genetic element (E622) that is present on all but the smallest plasmid (pPMA4326E) that has features of an IS element but lacks an identifiable transposase. This element is associated with virulence-related genes found in a wide range of P. syringae strains. Comparative genomic analyses of these and other P. syringae plasmids suggest a role for recombination and integrative elements in driving plasmid evolution.