Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Stingl is active.

Publication


Featured researches published by John Stingl.


Nature Reviews Cancer | 2007

Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis

John Stingl; Carlos Caldas

Human breast cancers are heterogeneous, both in their pathology and in their molecular profiles. This suggests the hypothesis that breast cancers can initiate in different cell types, either breast epithelial stem cells or their progeny (transit amplifying cells or committed differentiated cells). In this respect, breast cancer could be viewed as being similar to haematological malignancies for which an analogous model has been proposed. Drawing such parallels might help to unravel the molecular nature of the initiating events in breast cancer and might have substantial clinical implications.


Genes & Development | 2014

Mammary stem cells and the differentiation hierarchy: current status and perspectives

Jane E. Visvader; John Stingl

The mammary epithelium is highly responsive to local and systemic signals, which orchestrate morphogenesis of the ductal tree during puberty and pregnancy. Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. Lineage tracing has highlighted the existence of bipotent mammary stem cells (MaSCs) in situ as well as long-lived unipotent cells that drive morphogenesis and homeostasis of the ductal tree. Moreover, there is accumulating evidence for a heterogeneous MaSC compartment comprising fetal MaSCs, slow-cycling cells, and both long-term and short-term repopulating cells. In parallel, diverse luminal progenitor subtypes have been identified in mouse and human mammary tissue. Elucidation of the normal cellular hierarchy is an important step toward understanding the cells of origin and molecular perturbations that drive breast cancer.


Breast Cancer Research | 2013

Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

Suzanne A. Eccles; Eric O. Aboagye; Simak Ali; Annie S. Anderson; Jo Armes; Fedor Berditchevski; Jeremy P. Blaydes; Keith Brennan; Nicola J. Brown; Helen E. Bryant; N.J. Bundred; Joy Burchell; Anna Campbell; Jason S. Carroll; Robert B. Clarke; Charlotte E. Coles; Gary Cook; Angela Cox; Nicola J. Curtin; Lodewijk V. Dekker; Isabel dos Santos Silva; Stephen W. Duffy; Douglas F. Easton; Diana Eccles; Dylan R. Edwards; Joanne Edwards; D. G. Evans; Deborah Fenlon; James M. Flanagan; Claire Foster

IntroductionBreast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.MethodsMore than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.ResultsThe 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.ConclusionsWith resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.


Cell Reports | 2013

Endogenous Purification Reveals GREB1 as a Key Estrogen Receptor Regulatory Factor

Hisham Mohammed; Clive D’Santos; Aurelien A. Serandour; H. Raza Ali; Gordon D. Brown; Alan Atkins; Oscar M. Rueda; Kelly A. Holmes; Vasiliki Theodorou; Jessica L. L. Robinson; Wilbert Zwart; Amel Saadi; Caryn S. Ross-Innes; Suet-Feung Chin; Suraj Menon; John Stingl; Carlo Palmieri; Carlos Caldas; Jason S. Carroll

Estrogen receptor-α (ER) is the driving transcription factor in most breast cancers, and its associated proteins can influence drug response, but direct methods for identifying interacting proteins have been limited. We purified endogenous ER using an approach termed RIME (rapid immunoprecipitation mass spectrometry of endogenous proteins) and discovered the interactome under agonist- and antagonist-liganded conditions in breast cancer cells, revealing transcriptional networks in breast cancer. The most estrogen-enriched ER interactor is GREB1, a potential clinical biomarker with no known function. GREB1 is shown to be a chromatin-bound ER coactivator and is essential for ER-mediated transcription, because it stabilizes interactions between ER and additional cofactors. We show a GREB1-ER interaction in three xenograft tumors, and using a directed protein-protein approach, we find GREB1-ER interactions in half ofxa0ER(+) primary breast cancers. This finding is supported by histological expression of GREB1, which shows that GREB1 is expressed in half of ER(+) cancers, and predicts good clinical outcome. These findings reveal an unexpected role for GREB1 as an estrogen-specific ER cofactor that is expressed in drug-sensitive contexts.


Cell Stem Cell | 2015

Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations

Nicola K. Wilson; David G. Kent; Florian Buettner; Mona Shehata; Iain C. Macaulay; Fernando J. Calero-Nieto; Manuel Sánchez Castillo; Caroline Anna Oedekoven; Evangelia Diamanti; Reiner Schulte; Chris P. Ponting; Thierry Voet; Carlos Caldas; John Stingl; Anthony R. Green; Fabian J. Theis; Berthold Göttgens

Summary Heterogeneity within the self-renewal durability of adult hematopoietic stem cells (HSCs) challenges our understanding of the molecular framework underlying HSC function. Gene expression studies have been hampered by the presence of multiple HSC subtypes and contaminating non-HSCs in bulk HSC populations. To gain deeper insight into the gene expression program of murine HSCs, we combined single-cell functional assays with flow cytometric index sorting and single-cell gene expression assays. Through bioinformatic integration of these datasets, we designed an unbiased sorting strategy that separates non-HSCs away from HSCs, and single-cell transplantation experiments using the enriched population were combined with RNA-seq data to identify key molecules that associate with long-term durable self-renewal, producing a single-cell molecular dataset that is linked to functional stem cell activity. Finally, we demonstrated the broader applicability of this approach for linking key molecules with defined cellular functions in another stem cell system.


Nature Cell Biology | 2014

Mammary stem cells have myoepithelial cell properties

Michael D. Prater; Valérie Petit; I. Alasdair Russell; Rajshekhar R Giraddi; Mona Shehata; Suraj Menon; Reiner Schulte; Ivo Kalajzic; Nicola Rath; Michael F. Olson; Daniel Metzger; Marisa M. Faraldo; Marie-Ange Deugnier; Marina A. Glukhova; John Stingl

Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin–myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.


BMC Genomics | 2009

Characterisation of microRNA expression in post-natal mouse mammary gland development

Stefanie Avril-Sassen; Leonard D. Goldstein; John Stingl; Cherie Blenkiron; John Le Quesne; Inmaculada Spiteri; Konstantina Karagavriilidou; Christine J. Watson; Simon Tavaré; Eric A. Miska; Carlos Caldas

BackgroundThe differential expression pattern of microRNAs (miRNAs) during mammary gland development might provide insights into their role in regulating the homeostasis of the mammary epithelium. Our aim was to analyse these regulatory functions by deriving a comprehensive tissue-specific combined miRNA and mRNA expression profile of post-natal mouse mammary gland development.We measured the expression of 318 individual murine miRNAs by bead-based flow-cytometric profiling of whole mouse mammary glands throughout a 16-point developmental time course, including juvenile, puberty, mature virgin, gestation, lactation, and involution stages. In parallel whole-genome mRNA expression data were obtained.ResultsOne third (n = 102) of all murine miRNAs analysed were detected during mammary gland development. MicroRNAs were represented in seven temporally co-expressed clusters, which were enriched for both miRNAs belonging to the same family and breast cancer-associated miRNAs. Global miRNA and mRNA expression was significantly reduced during lactation and the early stages of involution after weaning. For most detected miRNA families we did not observe systematic changes in the expression of predicted targets. For miRNA families whose targets did show changes, we observed inverse patterns of miRNA and target expression. The data sets are made publicly available and the combined expression profiles represent an important community resource for mammary gland biology research.ConclusionMicroRNAs were expressed in likely co-regulated clusters during mammary gland development. Breast cancer-associated miRNAs were significantly enriched in these clusters. The mechanism and functional consequences of this miRNA co-regulation provide new avenues for research into mammary gland biology and generate candidates for functional validation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

PML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool

Wenjing Li; Brian J. Ferguson; Walid T. Khaled; Maxine Tevendale; John Stingl; Valeria Poli; Tina Rich; Paolo Salomoni; Christine J. Watson

Nuclear domains of promyelocytic leukemia protein (PML) are known to act as signaling nodes in many cellular processes. Although the impact of PML expression in driving cell fate decisions for injured cells is well established, the function of PML in the context of tissue development is less well understood. Here, the in vivo role of PML in developmental processes in the murine mammary gland has been investigated. Data are presented showing that expression of PML is tightly regulated by three members of the Stat family of transcription factors that orchestrate the functional development of the mammary secretory epithelium during pregnancy. Developmental phenotypes were also discovered in the virgin and pregnant Pml null mouse, typified by aberrant differentiation of mammary epithelia with reduced ductal and alveolar development. PML depletion was also found to disturb the balance of two distinct luminal progenitor populations. Overall, it is shown that PML is required for cell lineage determination in bi-potent luminal progenitor cells and that the precise regulation of PML expression is required for functional differentiation of alveolar cells.


Journal of Mammary Gland Biology and Neoplasia | 2012

Isolation of Mouse Mammary Epithelial Subpopulations: A Comparison of Leading Methods

Matthew John Smalley; Howard Kendrick; Julie Sheridan; Joseph L. Regan; Michael D. Prater; Geoffrey J. Lindeman; Christine J. Watson; Jane E. Visvader; John Stingl

Isolation of mammary epithelial subpopulations, including stem and progenitor cells, has become a standard technique in recent years. However, a number of methods and approaches for this have developed and the relative benefits of the different approaches, and the reason for their development, have not always been clear. Here, three of the leading laboratories working on the separation of mammary cell subpopulations have summarised their methods, highlighted their differences and similarities and also discussed the reasoning behind the approaches they have taken. This article will assist workers establishing mammary cell separation protocols in their laboratories to make informed choices about the methods they should use.


Nature Communications | 2015

BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells

Walid T. Khaled; Song Choon Lee; John Stingl; Xiongfeng Chen; H. Raza Ali; Oscar M. Rueda; Fazal Hadi; Juexuan Wang; Yong Yu; Suet Feung Chin; Michael R. Stratton; Andy Futreal; Nancy A. Jenkins; Sam Aparicio; Neal G. Copeland; Christine J. Watson; Carlos Caldas; Pentao Liu

Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other types of breast cancer. The molecular and cellular mechanisms underlying TNBC pathology are not fully understood. Here, we report that the transcription factor BCL11A is overexpressed in TNBC including basal-like breast cancer (BLBC) and that its genomic locus is amplified in up to 38% of BLBC tumours. Exogenous BCL11A overexpression promotes tumour formation, whereas its knockdown in TNBC cell lines suppresses their tumourigenic potential in xenograft models. In the DMBA-induced tumour model, Bcl11a deletion substantially decreases tumour formation, even in p53-null cells and inactivation of Bcl11a in established tumours causes their regression. At the cellular level, Bcl11a deletion causes a reduction in the number of mammary epithelial stem and progenitor cells. Thus, BCL11A has an important role in TNBC and normal mammary epithelial cells. This study highlights the importance of further investigation of BCL11A in TNBC-targeted therapies.

Collaboration


Dive into the John Stingl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mona Shehata

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed Bentires-Alj

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. D. Simons

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge