Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John T. Buchanan is active.

Publication


Featured researches published by John T. Buchanan.


Current Biology | 2006

DNase Expression Allows the Pathogen Group A Streptococcus to Escape Killing in Neutrophil Extracellular Traps

John T. Buchanan; Amelia Simpson; Ramy K. Aziz; George Y. Liu; Sascha A. Kristian; Malak Kotb; James R. Feramisco; Victor Nizet

The innate immune response plays a crucial role in satisfactory host resolution of bacterial infection. In response to chemotactic signals, neutrophils are early responding cells that migrate in large numbers to sites of infection. The recent discovery of secreted neutrophil extracellular traps (NETs) composed of DNA and histones opened a novel dimension in our understanding of the microbial killing capacity of these specialized leukocytes. M1 serotype strains of the pathogen Group A Streptococcus (GAS) are associated with invasive infections including necrotizing fasciitis (NF) and express a potent DNase (Sda1). Here we apply a molecular genetic approach of allelic replacement mutagenesis, single gene complementation, and heterologous expression to demonstrate that DNase Sda1 is both necessary and sufficient to promote GAS neutrophil resistance and virulence in a murine model of NF. Live fluorescent microscopic cell imaging and histopathological analysis are used to establish for the first time a direct linkage between NET degradation and bacterial pathogenicity. Inhibition of GAS DNase activity with G-actin enhanced neutrophil clearance of the pathogen in vitro and reduced virulence in vivo. The results demonstrate a significant role for NETs in neutrophil-mediated innate immunity, and at the same time identify a novel therapeutic target against invasive GAS infection.


Nature Medicine | 2007

DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection.

Mark J. Walker; Andrew Hollands; Martina L. Sanderson-Smith; Jason N. Cole; Joshua K. Kirk; Anna Henningham; Jason D. McArthur; Katrin Dinkla; Ramy K. Aziz; Rita Kansal; Amelia Simpson; John T. Buchanan; Gursharan S. Chhatwal; Malak Kotb; Victor Nizet

Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacteriums shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogens escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.


Infection and Immunity | 2005

Streptococcus iniae Phosphoglucomutase Is a Virulence Factor and a Target for Vaccine Development

John T. Buchanan; Jason A. Stannard; Xavier Lauth; Vaughn Ostland; Henry C. Powell; Mark Westerman; Victor Nizet

ABSTRACT Streptococcus iniae represents a major health and economic problem in fish species worldwide. Random Tn917 mutagenesis and high-throughput screening in a hybrid striped bass (HSB) model of meningoencephalitis identified attenuated S. iniae mutants. The Tn917 insertion in one mutant disrupted an S. iniae homologue of a phosphoglucomutase (pgm) gene. Electron microscopy revealed a decrease in capsule thickness and cell wall rigidity, with ΔPGM mutant cells reaching sizes ∼3-fold larger than those of the wild type (WT). The ΔPGM mutant was cleared more rapidly in HSB blood and was more sensitive to killing by cationic antimicrobial peptides including moronecidin from HSB. In vivo, the ΔPGM mutant was severely attenuated in HSB, as intraperitoneal challenge with 1,000 times the WT lethal dose produced only 2.5% mortality. Reintroduction of an intact copy of the S. iniae pgm gene on a plasmid vector restored antimicrobial peptide resistance and virulence to the ΔPGM mutant. In analysis of the aborted infectious process, we found that ΔPGM mutant organisms initially disseminated to the blood, brain, and spleen but were eliminated by 24 h without end organ damage. Ninety to 100% of fish injected with the ΔPGM mutant and later challenged with a lethal dose of WT S. iniae survived. We conclude that the pgm gene is required for virulence in S. iniae, playing a role in normal cell wall morphology, surface capsule expression, and resistance to innate immune clearance mechanisms. An S. iniae ΔPGM mutant is able to stimulate a protective immune response and may have value as a live attenuated vaccine for aquaculture.


Cell Host & Microbe | 2008

The IL-8 Protease SpyCEP/ScpC of Group A Streptococcus Promotes Resistance to Neutrophil Killing

Annelies S. Zinkernagel; Anjuli M. Timmer; Morgan A. Pence; Jeffrey B. Locke; John T. Buchanan; Claire E. Turner; Inbal Mishalian; Shiranee Sriskandan; Emanuel Hanski; Victor Nizet

Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation. SpyCEP decreased IL-8-dependent neutrophil endothelial transmigration and bacterial killing, the latter by reducing neutrophil extracellular trap formation. The knockout mutant lacking SpyCEP was attenuated for virulence in murine infection models, and SpyCEP expression conferred protection to coinfecting bacteria. We also show that the zoonotic pathogen Streptococcus iniae possesses a functional homolog of SpyCEP (CepI) that cleaves IL-8, promotes neutrophil resistance, and contributes to virulence. By inactivating the multifunctional host defense peptide IL-8, the SpyCEP protease impairs neutrophil clearance mechanisms, contributing to the pathogenesis of invasive streptococcal infection.


PLOS ONE | 2008

Streptococcus iniae M-Like Protein Contributes to Virulence in Fish and Is a Target for Live Attenuated Vaccine Development

Jeffrey B. Locke; Ramy K. Aziz; Mike R. Vicknair; Victor Nizet; John T. Buchanan

Background Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA) and C5a peptidase (scpI). Methodology/Principal Findings S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes), scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB) and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the ΔsimA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT) S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development. Conclusions/Significance Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an unusual arrangement. The M-like protein mutant created in this research holds promise as live-attenuated vaccine.


Journal of Bacteriology | 2007

Streptococcus iniae Capsule Impairs Phagocytic Clearance and Contributes to Virulence in Fish

Jeffrey B. Locke; Kelly M. Colvin; Anup Datta; Silpa K. Patel; Nandita Natasha Naidu; Melody N. Neely; Victor Nizet; John T. Buchanan

Surface capsular polysaccharides play a critical role in protecting several pathogenic microbes against innate host defenses during infection. Little is known about virulence mechanisms of the fish pathogen Streptococcus iniae, though indirect evidence suggests that capsule could represent an important factor. The putative S. iniae capsule operon contains a homologue of the cpsD gene, which is required for capsule polymerization and export in group B Streptococcus and Streptococcus pneumoniae. To elucidate the role of capsule in the S. iniae infectious process, we deleted cpsD from the genomes of two virulent S. iniae strains by allelic exchange mutagenesis to generate the isogenic capsule-deficient DeltacpsD strains. Compared to wild-type S. iniae, the DeltacpsD mutants had a predicted reduction in buoyancy and cell surface negative charge. Transmission electron microscopy confirmed a decrease in the abundance of extracellular capsular polysaccharide. Gas-liquid chromatography-mass spectrometry analysis of the S. iniae extracellular polysaccharides showed the presence of l-fucose, d-mannose, d-galactose, d-glucose, d-glucuronic acid, N-acetyl-d-galactosamine, and N-acetyl-d-glucosamine, and all except mannose were reduced in concentration in the isogenic mutant. The DeltacpsD mutants were highly attenuated in vivo in a hybrid striped bass infection challenge despite being more adherent and invasive to fish epithelial cells and more resistant to cationic antimicrobial peptides than wild-type S. iniae. Increased susceptibility of the S. iniae DeltacpsD mutants to phagocytic killing in whole fish blood and by a fish macrophage cell line confirmed the role of capsule in virulence and highlighted its antiphagocytic function. In summary, we report a genetically defined study on the role of capsule in S. iniae virulence and provide preliminary analysis of S. iniae capsular polysaccharide sugar components.


Microbiology | 2010

The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae

Carlo J. Milani; Ramy K. Aziz; Jeffrey B. Locke; Samira Dahesh; Victor Nizet; John T. Buchanan

The aquatic zoonotic pathogen Streptococcus iniae represents a threat to the worldwide aquaculture industry and poses a risk to humans who handle raw fish. Because little is known about the mechanisms of S. iniae pathogenesis or virulence factors, we established a high-throughput system combining whole-genome pyrosequencing and transposon mutagenesis that allowed us to identify virulence proteins, including Pdi, the polysaccharide deacetylase of S. iniae, that we describe here. Using bioinformatics tools, we identified a highly conserved signature motif in Pdi that is also conserved in the peptidoglycan deacetylase PgdA protein family. A Deltapdi mutant was attenuated for virulence in the hybrid striped bass model and for survival in whole fish blood. Moreover, Pdi was found to promote bacterial resistance to lysozyme killing and the ability to adhere to and invade epithelial cells. On the other hand, there was no difference in the autolytic potential, resistance to oxidative killing or resistance to cationic antimicrobial peptides between S. iniae wild-type and Deltapdi. In conclusion, we have demonstrated that pdi is involved in S. iniae adherence and invasion, lysozyme resistance and survival in fish blood, and have shown that pdi plays a role in the pathogenesis of S. iniae. Identification of Pdi and other S. iniae virulence proteins is a necessary initial step towards the development of appropriate preventive and therapeutic measures against diseases and economic losses caused by this pathogen.


Diseases of Aquatic Organisms | 2010

Evaluation of Streptococcus iniae killed bacterin and live attenuated vaccines in hybrid striped bass through injection and bath immersion

Jeffrey B. Locke; Mike R. Vicknair; Vaughn Ostland; Victor Nizet; John T. Buchanan

Streptococcus iniae poses a serious threat to finfish aquaculture operations worldwide. Stringent regulatory standards limit the use of antibiotics to treat S. iniae infections; improved vaccination strategies are thus of great interest. We investigated the potential for efficient, non-injectable batch vaccination via the use of live attenuated vaccines. Three attenuated S. iniae strains with genetic mutations eliminating the production of virulence factors--capsular polysaccharide (delta cpsD), M-like protein (delta simA), and phosphoglucomutase (delta pgmA)--were evaluated in parallel with an adjuvanted, formalin-killed, whole-cell S. iniae bacterin. Juvenile hybrid striped bass (HSB; Morone chrysops x M. saxatilis) were vaccinated through intraperitoneal (i.p.) injection or bath immersion and held for 800 degree-days prior to challenge with a lethal dose of the virulent wild-type (WT) S. iniae parent strain. The delta cpsD, delta pgmA, and bacterin vaccines provided the highest level of vaccination safety (0% mortality), whereas the delta simA mutant, although it caused 12 to 16% vaccination-related mortality, was the only vaccine candidate to provide 100% protection in both i.p. and immersion delivery models. Our studies demonstrate the efficacy of live attenuated vaccines for prevention of S. iniae infection, and identify immersion delivery of live vaccines as an attractive option for use in commercial aquaculture settings.


Veterinary Microbiology | 2008

Strain-associated virulence factors of Streptococcus iniae in hybrid-striped bass

John T. Buchanan; Kelly M. Colvin; Mike R. Vicknair; Silpa K. Patel; Anjuli M. Timmer; Victor Nizet

Streptococcus iniae is a major fish pathogen producing invasive infections that result in economic losses in aquaculture. Development of in vitro models of S. iniae virulence may provide insight to the pathogenesis of infection in vivo. Three S. iniae strains (K288, 94-426, and 29178) were tested for virulence in a hybrid-striped bass (HSB) model using intraperitoneal injection. S. iniae strains K288 and 94-426 caused high levels of mortality in HSB (lethal dose 2x10(5)CFU) while strain 29178 was avirulent even upon IP challenge with 1000-fold higher inocula. In vitro assays were developed to test for the presence of characteristics previously associated with virulence in other species of pathogenic Streptococcus in animals and humans. In vitro differences relevant to virulence were not detected for beta-hemolysin activity, sensitivity to antimicrobial peptides, or adherence and invasion of epithelial cell layers. However, in whole-blood killing assays, the pathogenic strains were resistant to blood clearance, while 29178 was cleared (P<0.001) and more sensitive to complement (P<0.001). The avirulent strain 29178 was most efficiently phagocytosed and was most susceptible to intracellular killing (P<0.01) by the carp leukocyte cell line (CLC). When exposed to reactive oxygen species, strain 29178 was most susceptible. When the oxidative burst of CLC cells was inhibited, intracellular survival of 29178 was rescued fivefold, while no significant enhancement in survival of K288 or 94-426 was detected. Our results indicate that resistance to phagocytosis, oxidative killing, and associated phagocytic clearance is a significant factor in S. iniae virulence.


Marine Biotechnology | 2001

Transfection of eastern oyster ( Crassotrea virginica) embryos.

John T. Buchanan; Amy D. Nickens; Richard K. Cooper; Terrence R. Tiersch

Abstract: There is a need for research in disease resistance and microbial elimination in the eastern oyster Crassosostrea virginica. Gene transfer may lead to advances in this area, and a means of selecting transfected larvae would be useful. We transfected 3-hour-postfertilization embryos with the bacterial gene aminoglycoside phosphotransferase II (neor), which confers resistance to neomycin and related antibiotics such as G418. The antibiotic G418 was examined as a potential selective agent. A neutral red assay was used to determine survival after 48 hours of exposure to various concentrations of G418 (0–4 mg/ml). We examined the effects of electroporation and chemically mediated transfection of 3-hour-postfertilization embryos on survival to straight-hinge larvae. DNA alone was found to have no effect on survival (P > .05). For electroporation we found that increased voltage and pulse duration decreased survival (P < .05). Chemically mediated transfection did not significantly affect survival (P= .5172). Transgenic larvae were identified after electroporation and chemically mediated transfection. These larvae were reared for 24 hours and exposed to G418 at 0.3 mg/ml for 48 hours. Significant differences in survival between transfected and nontransfected larvae were detected for electroporation (P= .0147) and chemically mediated transfection (P= .037). Gene transfer was also confirmed with polymerase chain reaction and observation of expression of green fluorescent protein. This study documents the first successful insertion and expression of foreign DNA in eastern oyster larvae.

Collaboration


Dive into the John T. Buchanan's collaboration.

Top Co-Authors

Avatar

Victor Nizet

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terrence R. Tiersch

Louisiana State University Agricultural Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard K. Cooper

Louisiana State University Agricultural Center

View shared research outputs
Top Co-Authors

Avatar

Xavier Lauth

University of California

View shared research outputs
Top Co-Authors

Avatar

Amelia Simpson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge