Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John T. Cunningham is active.

Publication


Featured researches published by John T. Cunningham.


Nature | 2007

mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex

John T. Cunningham; Joseph T. Rodgers; Daniel H. Arlow; Francisca Vazquez; Vamsi K. Mootha; Pere Puigserver

Transcriptional complexes that contain peroxisome-proliferator-activated receptor coactivator (PGC)-1α control mitochondrial oxidative function to maintain energy homeostasis in response to nutrient and hormonal signals. An important component in the energy and nutrient pathways is mammalian target of rapamycin (mTOR), a kinase that regulates cell growth, size and survival. However, it is unknown whether and how mTOR controls mitochondrial oxidative activities. Here we show that mTOR is necessary for the maintenance of mitochondrial oxidative function. In skeletal muscle tissues and cells, the mTOR inhibitor rapamycin decreased the gene expression of the mitochondrial transcriptional regulators PGC-1α, oestrogen-related receptor α and nuclear respiratory factors, resulting in a decrease in mitochondrial gene expression and oxygen consumption. Using computational genomics, we identified the transcription factor yin-yang 1 (YY1) as a common target of mTOR and PGC-1α. Knockdown of YY1 caused a significant decrease in mitochondrial gene expression and in respiration, and YY1 was required for rapamycin-dependent repression of those genes. Moreover, mTOR and raptor interacted with YY1, and inhibition of mTOR resulted in a failure of YY1 to interact with and be coactivated by PGC-1α. We have therefore identified a mechanism by which a nutrient sensor (mTOR) balances energy metabolism by means of the transcriptional control of mitochondrial oxidative function. These results have important implications for our understanding of how these pathways might be altered in metabolic diseases and cancer.


Journal of Clinical Investigation | 2012

ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth

Lori S. Hart; John T. Cunningham; Tatini Datta; Souvik Dey; Feven Tameire; Stacey L. Lehman; Bo Qiu; Haiyan Zhang; George J. Cerniglia; Meixia Bi; Yan Li; Yan Gao; Huayi Liu; Changhong Li; Amit Maity; Andrei Thomas-Tikhonenko; Alexander E. Perl; Albert C. Koong; Serge Y. Fuchs; J. Alan Diehl; Ian G. Mills; Davide Ruggero; Constantinos Koumenis

The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.


Molecular and Cellular Biology | 2012

Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle.

Sharon M. Blättler; Francisco Verdeguer; Marc Liesa; John T. Cunningham; Rutger Vogel; Helen Chim; Huifei Liu; Klaas Romanino; Orian S. Shirihai; Francisca Vazquez; Markus A. Rüegg; Yang Shi; Pere Puigserver

ABSTRACT The formation, distribution, and maintenance of functional mitochondria are achieved through dynamic processes that depend strictly on the transcription of nuclear genes encoding mitochondrial proteins. A large number of these mitochondrial genes contain binding sites for the transcription factor Yin Yang 1 (YY1) in their proximal promoters, but the physiological relevance is unknown. We report here that skeletal-muscle-specific YY1 knockout (YY1mKO) mice have severely defective mitochondrial morphology and oxidative function associated with exercise intolerance, signs of mitochondrial myopathy, and short stature. Gene set enrichment analysis (GSEA) revealed that the top pathways downregulated in YY1mKO mice were assigned to key metabolic and regulatory mitochondrial genes. This analysis was consistent with a profound decrease in the level of mitochondrial proteins and oxidative phosphorylation (OXPHOS) bioenergetic function in these mice. In contrast to the finding for wild-type mice, inactivation of the mammalian target of rapamycin (mTOR) did not suppress mitochondrial genes in YY1mKO mice. Mechanistically, mTOR-dependent phosphorylation of YY1 resulted in a strong interaction between YY1 and the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α), a major regulator of mitochondrial function. These results underscore the important role of YY1 in the maintenance of mitochondrial function and explain how its inactivation might contribute to exercise intolerance and mitochondrial myopathies.


Cancer Discovery | 2013

New Connections between Old Pathways: PDK1 Signaling Promotes Cellular Transformation through PLK1-Dependent MYC Stabilization

John T. Cunningham; Davide Ruggero

Limited understanding of the functional link between multiple oncogenic pathways is a major barrier in the ongoing effort of cancer biologists to design an effective therapeutic approach to treat malignancies characterized by driver oncogenic network signals. In this issue of Cancer Discovery, Tan and colleagues elucidate a novel PDK1-PLK1-MYC signaling pathway connecting two fundamental oncogenic programs, phosphoinositide 3-kinase and MYC. They define the functional role for PDK1-PLK1-MYC signaling in cancer cell survival and tumor formation and show the therapeutic benefit of inhibiting PDK1 and PLK1 pharmacologically in cancer, tackling the most undruggable tumors defined by elevated levels of the MYC oncoprotein.


Clinical Cancer Research | 2017

Non-invasive measurement of mTORC1 signaling with 89Zr-transferrin.

Charles Truillet; John T. Cunningham; Matthew F.L. Parker; Loc T. Huynh; Crystal S. Conn; Davide Ruggero; Jason S. Lewis; Michael J. Evans

Purpose: mTOR regulates many normal physiological processes and when hyperactive can drive numerous cancers and human diseases. However, it is very challenging to detect and quantify mTOR signaling noninvasively in clinically relevant animal models of disease or man. We hypothesized that a nuclear imaging tool measuring intracellular mTOR activity could address this unmet need. Experimental Design: Although the biochemical activity of mTOR is not directly amenable to nuclear imaging probe development, we show that the transferrin receptor can be used to indirectly measure intracellular changes in mTOR activity. Results: After verifying that the uptake of radiolabeled transferrin (the soluble ligand of the transferrin receptor) is stimulated by active mTORC1 in vitro, we showed that 89Zr-labeled transferrin (Tf) can measure mTORC1 signaling dynamics in normal and cancerous mouse tissues with PET. Finally, we show that 89Zr-Tf can detect the upregulation of mTORC1 by tumor cells to escape the antitumor effects of a standard-of-care antiandrogen, which is to our knowledge the first example of applying PET to interrogate the biology of treatment resistant cancer. Conclusions: In summary, we have developed the first quantitative assay to provide a comprehensive measurement of mTOR signaling dynamics in vivo, in specific normal tissues, and during tumor development in genetically engineered animal models using a nuclear imaging tool that is readily translatable to man. Clin Cancer Res; 23(12); 3045–52. ©2016 AACR.


Molecular Endocrinology | 2014

Decreased Genetic Dosage of Hepatic Yin Yang 1 Causes Diabetic-Like Symptoms

Francisco Verdeguer; Sharon M. Blättler; John T. Cunningham; Jessica A. Hall; Helen Chim; Pere Puigserver

Insulin sensitivity in liver is characterized by the ability of insulin to efficiently inhibit glucose production and fatty acid oxidation as well as promote de novo lipid biosynthesis. Specific dysregulation of glucose and lipid metabolism in liver is sufficient to cause insulin resistance and type 2 diabetes; this is seen by a selective inability of insulin to suppress glucose production while remaining insulin-sensitive to de novo lipid biosynthesis. We have previously shown that the transcription factor Yin Yang 1 (YY1) controls diabetic-linked glucose and lipid metabolism gene sets in skeletal muscle, but whether liver YY1-targeted metabolic genes impact a diabetic phenotype is unknown. Here we show that decreased genetic dosage of YY1 in liver causes insulin resistance, hepatic lipid accumulation, and dyslipidemia. Indeed, YY1 liver-specific heterozygous mice exhibit blunted activation of hepatic insulin signaling in response to insulin. Mechanistically, YY1, through direct recruitment to promoters, functions as a suppressor of genes encoding for metabolic enzymes of the gluconeogenic and lipogenic pathways and as an activator of genes linked to fatty acid oxidation. These counterregulatory transcriptional activities make targeting hepatic YY1 an attractive approach for treating insulin-resistant diabetes.


Science Translational Medicine | 2018

Development of a stress response therapy targeting aggressive prostate cancer

Hao G. Nguyen; Crystal S. Conn; Yae Kye; Lingru Xue; Craig M. Forester; Janet E. Cowan; Andrew C. Hsieh; John T. Cunningham; Charles Truillet; Feven Tameire; Michael J. Evans; Christopher P. Evans; Joy C. Yang; Byron Hann; Constantinos Koumenis; Peter Walter; Peter R. Carroll; Davide Ruggero

The PERK-eIF2α pathway is activated in aggressive prostate cancer and associated with patient outcome, providing a therapeutic target for the disease. Stressing out prostate cancer As tumors grow, they undergo a variety of metabolic changes that facilitate their proliferation. Protein synthesis is one of the cellular processes that is altered in cancer cells, because its continued activation helps drive cancer growth. This is not a benign adaptation, however, and unchecked up-regulation of protein synthesis can be toxic to the cells because it promotes cellular stress. As Nguyen et al. discovered, prostate cancer cells with a specific combination of mutations can override this stress by activating a protein called eIF2α, which protects them from excessive protein synthesis. To target this pathway, the authors identified an inhibitor of eIF2α that blocks this protective mechanism and has therapeutic activity against aggressive and otherwise untreatable prostate cancer. Oncogenic lesions up-regulate bioenergetically demanding cellular processes, such as protein synthesis, to drive cancer cell growth and continued proliferation. However, the hijacking of these key processes by oncogenic pathways imposes onerous cell stress that must be mitigated by adaptive responses for cell survival. The mechanism by which these adaptive responses are established, their functional consequences for tumor development, and their implications for therapeutic interventions remain largely unknown. Using murine and humanized models of prostate cancer (PCa), we show that one of the three branches of the unfolded protein response is selectively activated in advanced PCa. This adaptive response activates the phosphorylation of the eukaryotic initiation factor 2–α (P-eIF2α) to reset global protein synthesis to a level that fosters aggressive tumor development and is a marker of poor patient survival upon the acquisition of multiple oncogenic lesions. Using patient-derived xenograft models and an inhibitor of P-eIF2α activity, ISRIB, our data show that targeting this adaptive brake for protein synthesis selectively triggers cytotoxicity against aggressive metastatic PCa, a disease for which presently there is no cure.


Methods of Molecular Biology | 2013

Investigating Myc-Dependent Translational Regulation in Normal and Cancer Cells

John T. Cunningham; Michael Pourdehnad; Craig R. Stumpf; Davide Ruggero

There is an increasing realization that a primary role for Myc in driving cellular growth and cell cycle progression relies on Mycs ability to increase the rate of protein synthesis. Myc induces myriad changes in both global and specific mRNA translation. Herein, we present three assays that allow researchers to measure changes in protein synthesis at the global level as well as alterations in the translation of specific mRNAs. Metabolic labeling of cells with (35)S-containing methionine and cysteine is presented as a method to measure the overall rate of global protein synthesis. The bicistronic reporter assay is employed to determine levels of cap-dependent and cap-independent translation initiation in the cell. Finally, isolation of polysome-associated mRNAs followed by next-generation sequencing, microarray or quantitative real-time PCR (qRT-PCR) analysis is utilized to detect changes in the abundance of specific mRNAs that are regulated upon Myc hyperactivation. The protocols described in this chapter can be used to understand how and to what extent Myc-dependent regulation of translation influences normal cellular functions as well as tumorigenesis.


Journal of Bone and Mineral Research | 2004

Rapid inhibitory effects of glucocorticoids on ERK activity and osteoblast proliferation occur via transcriptional upregulation of MKP-1

K Horsch; H de Wet; C R Langeveldt; F S Hough; Jacky M. Burrin; John T. Cunningham; P A Hulley

Genetic studies based on cohorts with rare and extreme bone phenotypes have shown that the LRP5 gene is an important genetic modulator of BMD. Using family‐based and case‐control approaches, this study examines the role of the LRP5 gene in determining normal population variation of BMD and describes significant association and suggestive linkage between LRP5 gene polymorphisms and BMD in >900 individuals with a broad range of BMD.


Cell | 2014

Protein and Nucleotide Biosynthesis Are Coupled by a Single Rate-Limiting Enzyme, PRPS2, to Drive Cancer

John T. Cunningham; Melissa V. Moreno; Alessia Lodi; Sabrina M. Ronen; Davide Ruggero

Collaboration


Dive into the John T. Cunningham's collaboration.

Top Co-Authors

Avatar

Davide Ruggero

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K Horsch

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar

P A Hulley

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge