John T. Heap
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John T. Heap.
Nature | 2010
Sarah A. Kuehne; Stephen T. Cartman; John T. Heap; Michelle L. Kelly; Alan Cockayne; Nigel P. Minton
Clostridium difficile infection is the leading cause of healthcare-associated diarrhoea in Europe and North America. During infection, C. difficile produces two key virulence determinants, toxin A and toxin B. Experiments with purified toxins have indicated that toxin A alone is able to evoke the symptoms of C. difficile infection, but toxin B is unable to do so unless it is mixed with toxin A or there is prior damage to the gut mucosa. However, a recent study indicated that toxin B is essential for C. difficile virulence and that a strain producing toxin A alone was avirulent. This creates a paradox over the individual importance of toxin A and toxin B. Here we show that isogenic mutants of C. difficile producing either toxin A or toxin B alone can cause fulminant disease in the hamster model of infection. By using a gene knockout system to inactivate the toxin genes permanently, we found that C. difficile producing either one or both toxins showed cytotoxic activity in vitro that translated directly into virulence in vivo. Furthermore, by constructing the first ever double-mutant strain of C. difficile, in which both toxin genes were inactivated, we were able to completely attenuate virulence. Our findings re-establish the importance of both toxin A and toxin B and highlight the need to continue to consider both toxins in the development of diagnostic tests and effective countermeasures against C. difficile.
Journal of Microbiological Methods | 2009
John T. Heap; Oliver Pennington; Stephen T. Cartman; Nigel P. Minton
Despite their medical and industrial importance, our basic understanding of the biology of the genus Clostridium is rudimentary in comparison to their aerobic counterparts in the genus Bacillus. A major contributing factor has been the comparative lack of sophistication in the gene tools available to the clostridial molecular biologist, which are immature, and in clear need of development. The transfer and maintenance of recombinant, replicative plasmids into various species of Clostridium has been reported, and several elements suitable as shuttle plasmid components are known. However, these components have to-date only been available in disparate plasmid contexts, and their use has not been broadly explored. Here we describe the specification, design and construction of a standardized modular system for Clostridium-Escherichia coli shuttle plasmids. Existing replicons and selectable markers were incorporated, along with a novel clostridial replicon. The properties of these components were compared, and the data allow researchers to identify combinations of components potentially suitable for particular hosts and applications. The system has been extensively tested in our laboratory, where it is utilized in all ongoing recombinant work. We propose that adoption of this modular system as a standard would be of substantial benefit to the Clostridium research community, whom we invite to use and contribute to the system.
Applied and Environmental Microbiology | 2012
Stephen T. Cartman; Michelle L. Kelly; Daniela Heeg; John T. Heap; Nigel P. Minton
ABSTRACT Clostridium difficile causes a potentially fatal diarrheal disease through the production of its principal virulence factors, toxin A and toxin B. The tcdC gene is thought to encode a negative regulator of toxin production. Therefore, increased toxin production, and hence increased virulence, is often inferred in strains with an aberrant tcdC genotype. This report describes the first allele exchange system for precise genetic manipulation of C. difficile, using the codA gene of Escherichia coli as a heterologous counterselection marker. It was used to systematically restore the Δ117 frameshift mutation and the 18-nucleotide deletion that occur naturally in the tcdC gene of C. difficile R20291 (PCR ribotype 027). In addition, the naturally intact tcdC gene of C. difficile 630 (PCR ribotype 012) was deleted and then subsequently restored with a silent nucleotide substitution, or “watermark,” so the resulting strain was distinguishable from the wild type. Intriguingly, there was no association between the tcdC genotype and toxin production in either C. difficile R20291 or C. difficile 630. Therefore, an aberrant tcdC genotype does not provide a broadly applicable rationale for the perceived notion that PCR ribotype 027 strains are “high-level” toxin producers. This may well explain why several studies have reported that an aberrant tcdC gene does not predict increased toxin production or, indeed, increased virulence.
Nucleic Acids Research | 2012
John T. Heap; Muhammad Ehsaan; Clare M. Cooksley; Yen-Kuan Ng; Stephen T. Cartman; Klaus Winzer; Nigel P. Minton
Most bacteria can only be transformed with circular plasmids, so robust DNA integration methods for these rely upon selection of single-crossover clones followed by counter-selection of double-crossover clones. To overcome the limited availability of heterologous counter-selection markers, here we explore novel DNA integration strategies that do not employ them, and instead exploit (i) activation or inactivation of genes leading to a selectable phenotype, and (ii) asymmetrical regions of homology to control the order of recombination events. We focus here on the industrial biofuel-producing bacterium Clostridium acetobutylicum, which previously lacked robust integration tools, but the approach we have developed is broadly applicable. Large sequences can be delivered in a series of steps, as we demonstrate by inserting the chromosome of phage lambda (minus a region apparently unstable in Escherichia coli in our cloning context) into the chromosome of C. acetobutylicum in three steps. This work should open the way to reliable integration of DNA including large synthetic constructs in diverse microorganisms.
Journal of Bacteriology | 2010
David A. Burns; John T. Heap; Nigel P. Minton
Clostridium difficile is the major cause of infectious diarrhea and a major burden to health care services. The ability of this organism to form endospores plays a pivotal role in infection and disease transmission. Spores are highly resistant to many forms of disinfection and thus are able to persist on hospital surfaces and disseminate infection. In order to cause disease, the spores must germinate and the organism must grow vegetatively. Spore germination in Bacillus is well understood, and genes important for this process have recently been identified in Clostridium perfringens; however, little is known about C. difficile. Apparent homologues of the spore cortex lytic enzyme genes cwlJ and sleB (Bacillus subtilis) and sleC (C. perfringens) are present in the C. difficile genome, and we describe inactivation of these homologues in C. difficile 630Delta erm and a B1/NAP1/027 clinical isolate. Spores of a sleC mutant were unable to form colonies when germination was induced with taurocholate, although decoated sleC spores formed the same number of heat-resistant colonies as the parental control, even in the absence of germinants. This suggests that sleC is absolutely required for conversion of spores to vegetative cells, in contrast to CD3563 (a cwlJ/sleB homologue), inactivation of which had no effect on germination and outgrowth of C. difficile spores under the same conditions. The B1/NAP1/027 strain R20291 was found to sporulate more slowly and produce fewer spores than 630Delta erm. Furthermore, fewer R20291 spores germinated, indicating that there are differences in both sporulation and germination between these epidemic and nonepidemic C. difficile isolates.
Molecular Microbiology | 2011
Elisabeth Steiner; Angel E. Dago; Danielle I. Young; John T. Heap; Nigel P. Minton; James A. Hoch; Michael Young
The phosphorylated Spo0A transcription factor controls the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosphorelay components, Spo0F and Spo0B, are missing in the genome. We hypothesized that the five orphan histidine kinases of C. acetobutylicum interact directly with Spo0A to control its phosphorylation state. Sequential targeted gene disruption and gene expression profiling provided evidence for two pathways for Spo0A activation, one dependent on a histidine kinase encoded by cac0323, the other on both histidine kinases encoded by cac0903 and cac3319. Purified Cac0903 and Cac3319 kinases autophosphorylated and transferred phosphoryl groups to Spo0A in vitro, confirming their role in Spo0A activation in vivo. A cac0437 mutant hyper‐sporulated, suggesting that Cac0437 is a modulator that prevents sporulation and maintains cellular Spo0A∼P homeostasis during growth. Accordingly, Cac0437 has apparently lost the ability to autophosphorylate in vitro; instead it catalyses the ATP‐dependent dephosphorylation of Spo0A∼P releasing inorganic phosphate. Direct phosphorylation of Spo0A by histidine kinases and dephosphorylation by kinase‐like proteins may be a common feature of the clostridia that may represent the ancestral state before the great oxygen event some 2.4 billion years ago, after which additional phosphorelay proteins were recruited in the evolutionary lineage that led to the bacilli.
Research in Microbiology | 2010
David A. Burns; John T. Heap; Nigel P. Minton
Endospore production is vital for the spread of Clostridium difficile infection. However, in order to cause disease, these spores must germinate and return to vegetative cell growth. Knowledge of germination is therefore important, with potential practical implications for routine cleaning, outbreak management and potentially in the design of new therapeutics. Germination has been well studied in Bacillus, but until recently there had been few studies reported in C. difficile. The role of bile salts as germinants for C. difficile spores has now been described in some detail, which improves our understanding of how C. difficile spores interact with their environment following ingestion by susceptible individuals. Furthermore, with the aid of novel genetic tools, it has now become possible to study the germination of C. difficile spores using both a forward and reverse genetics approach. Significant progress is beginning to be made in the study of this important aspect of C. difficile disease.
Methods of Molecular Biology | 2010
John T. Heap; Stephen T. Cartman; Sarah A. Kuehne; Clare M. Cooksley; Nigel P. Minton
Members of the genus Clostridium have long been recognised as important to humankind and its animals, both in terms of the diseases they cause and the useful biological processes they undertake. This has led to increasing efforts directed at deriving greater information on their basic biology, most notably through genome sequence. Accordingly, annotated sequences of all of the most important species are now available. However, full exploitation of the data generated has been hindered by the lack of mutational tools that may be used in functional genomic studies. Thus, the number of clostridial mutants generated has until recently been disappointingly small. In particular, the construction of directed mutants using classical homologous recombination-based methods has met with only limited success. Moreover, most of these few mutants were constructed by the unstable integration of a plasmid into the chromosome via a single crossover event. As an alternative, recombination-independent strategies have been devised that are reliant upon a re-targeted group II intron. One element in particular, the ClosTron, provides the facility for the positive selection of insertional mutants. The generation of mutants using the ClosTron is extremely rapid (as little as 10 days) and is highly efficient and reproducible. Furthermore, the insertions made are extremely stable. Its deployment has considerably expanded available options for clostridial functional genomic studies.
Biotechnology for Biofuels | 2013
Katalin Kovács; Benjamin J. Willson; Katrin Schwarz; John T. Heap; Adam Jackson; David N. Bolam; Klaus Winzer; Nigel P. Minton
BackgroundConsolidated bioprocessing (CBP) is reliant on the simultaneous enzyme production, saccharification of biomass, and fermentation of released sugars into valuable products such as butanol. Clostridial species that produce butanol are, however, unable to grow on crystalline cellulose. In contrast, those saccharolytic species that produce predominantly ethanol, such as Clostridium thermocellum and Clostridium cellulolyticum, degrade crystalline cellulose with high efficiency due to their possession of a multienzyme complex termed the cellulosome. This has led to studies directed at endowing butanol-producing species with the genetic potential to produce a cellulosome, albeit by localising the necessary transgenes to unstable autonomous plasmids. Here we have explored the potential of our previously described Allele-Coupled Exchange (ACE) technology for creating strains of the butanol producing species Clostridium acetobutylicum in which the genes encoding the various cellulosome components are stably integrated into the genome.ResultsWe used BioBrick2 (BB2) standardised parts to assemble a range of synthetic genes encoding C. thermocellum cellulosomal scaffoldin proteins (CipA variants) and glycoside hydrolases (GHs, Cel8A, Cel9B, Cel48S and Cel9K) as well as synthetic cellulosomal operons that direct the synthesis of Cel8A, Cel9B and a truncated form of CipA. All synthetic genes and operons were integrated into the C. acetobutylicum genome using the recently developed ACE technology. Heterologous protein expression levels and mini-cellulosome self-assembly were assayed by western blot and native PAGE analysis.ConclusionsWe demonstrate the successful expression, secretion and self-assembly of cellulosomal subunits by the recombinant C. acetobutylicum strains, providing a platform for the construction of novel cellulosomes.
Applied and Environmental Microbiology | 2011
Katja Selby; Miia Lindström; Panu Somervuo; John T. Heap; Nigel P. Minton; Hannu Korkeala
ABSTRACT Class I heat shock genes (HSGs) code for molecular chaperones which play a major role in the bacterial response to sudden increases of environmental temperature by assisting protein folding. Quantitative reverse transcriptase real-time PCR gene expression analysis of the food-borne pathogen Clostridium botulinum grown at 37°C showed that the class I HSGs grpE, dnaK, dnaJ, groEL, and groES and their repressor, hrcA, were expressed at constant levels in the exponential and transitional growth phases, whereas strong downregulation of all six genes was observed during stationary phase. After heat shock from 37 to 45°C, all HSGs were transiently upregulated. A mutant with insertionally inactivated hrcA expressed higher levels of class I HSGs during exponential growth than the wild type, followed by upregulation of only groES and groES after heat shock. Inactivation of hrcA or of dnaK encoding a major chaperone resulted in lower maximum growth temperatures than for the wild type and reduced growth rates under optimal conditions compared to the wild type. The dnaK mutant showed growth inhibition under all tested temperature, pH, and NaCl stress conditions. In contrast, the growth of an hrcA mutant was unaffected by mild temperature or acid stress compared to the wild-type strain, indicating that induced class I HSGs support growth under moderately nonoptimal conditions. We show that the expression of class I HSGs plays a major role for survival and growth of C. botulinum under the stressful environmental conditions that may be encountered during food processing or growth in food products, in the mammalian intestine, or in wounds.