Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John T. Jayne is active.

Publication


Featured researches published by John T. Jayne.


Science | 2009

Evolution of Organic Aerosols in the Atmosphere

Jose L. Jimenez; Manjula R. Canagaratna; Neil M. Donahue; André S. H. Prévôt; Qi Zhang; Jesse H. Kroll; P. F. DeCarlo; J. D. Allan; Hugh Coe; Nga L. Ng; A. C. Aiken; Kenneth S. Docherty; Ingrid M. Ulbrich; Andrew P. Grieshop; Allen L. Robinson; Jonathan Duplissy; Jared D. Smith; Katherine Wilson; V. A. Lanz; C. Hueglin; Yele Sun; Jian Tian; Ari Laaksonen; T. Raatikainen; J. Rautiainen; Petri Vaattovaara; Mikael Ehn; Markku Kulmala; Jason M. Tomlinson; Don R. Collins

Framework for Change Organic aerosols make up 20 to 90% of the particulate mass of the troposphere and are important factors in both climate and human heath. However, their sources and removal pathways are very uncertain, and their atmospheric evolution is poorly characterized. Jimenez et al. (p. 1525; see the Perspective by Andreae) present an integrated framework of organic aerosol compositional evolution in the atmosphere, based on model results and field and laboratory data that simulate the dynamic aging behavior of organic aerosols. Particles become more oxidized, more hygroscopic, and less volatile with age, as they become oxygenated organic aerosols. These results should lead to better predictions of climate and air quality. Organic aerosols are not compositionally static, but they evolve dramatically within hours to days of their formation. Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.


Geophysical Research Letters | 2007

Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes

Qiu Zhang; Jose L. Jimenez; Manjula R. Canagaratna; J. D. Allan; Hugh Coe; Ingrid M. Ulbrich; M. R. Alfarra; Akinori Takami; Ann M. Middlebrook; Yele Sun; Katja Dzepina; E. J. Dunlea; Kenneth S. Docherty; P. F. DeCarlo; Dara Salcedo; Timothy B. Onasch; John T. Jayne; T. Miyoshi; Akio Shimono; Shiro Hatakeyama; N. Takegawa; Yutaka Kondo; Johannes Schneider; Frank Drewnick; S. Borrmann; Silke Weimer; Kenneth L. Demerjian; Paul Williams; Keith N. Bower; Roya Bahreini

[1] Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.


Aerosol Science and Technology | 2000

Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles

John T. Jayne; D. Leard; Xuefeng Zhang; P. Davidovits; Kenneth A. Smith; Charles E. Kolb; Douglas R. Worsnop

The importance of atmospheric aerosols in regulating the Earths climate and their potential detrimental impact on air quality and human health has stimulated the need for instrumentation which can provide real-time analysis of size resolved aerosol, mass, and chemical composition. We describe here an aerosol mass spectrometer (AMS) which has been developed in response to these aerosol sampling needs and present results which demonstrate quantitative mea surement capability for a laboratory-generated pure component NH4 NO3 aerosol. The instrument combines standard vacuum and mass spectrometric technologies with recently developed aerosol sampling techniques. A unique aerodynamic aerosol inlet (developed at the University of Minnesota) focuses particles into a narrow beam and efficiently transports them into vacuum where aerodynamic particle size is determined via a particle time-of-flight (TOF) measurement. Time-resolved particle mass detection is performed mass spectrometrically following particle flash vaporization on a resistively heated surface. Calibration data are presented for aerodynamic particle velocity and particle collection efficiency measurements. The capability to measure aerosol size and mass distributions is compared to simultaneous measurements using a differential mobility analyzer (DMA) and condensation particle counter (CPC). Quantitative size classification is demonstrated for pure component NH4 NO3 aerosols having mass concentrations 0.25mu g m -3. Results of fluid dynamics calculations illustrating the performance of the aerodynamic lens are also presented and compared to the measured performance. The utility of this AMS as both a laboratory and field portable instrument is discussed.


Journal of Geophysical Research | 2003

Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer

Jose L. Jimenez; John T. Jayne; Q. Shi; Charles E. Kolb; Douglas R. Worsnop; Ivan Yourshaw; John H. Seinfeld; Xuefeng Zhang; Kenneth A. Smith; James W. Morris; P. Davidovits

The Aerodyne Aerosol Mass Spectrometer (AMS) has been designed to measure size-resolved mass distributions and total mass loadings of volatile and semivolatile chemical species in/on submicron particles. This paper describes the application of this instrument to ambient aerosol sampling. The AMS uses an aerodynamic lens to focus the particles into a narrow beam, a roughened cartridge heater to vaporize them under high vacuum, and a quadrupole mass spectrometer to analyze the vaporized molecules. Particle size is measured via particle time-of-flight. The AMS is operated in two modes: (1) a continuous mass spectrum mode without size information; and (2) a size distribution measurement mode for selected m/z settings of the quadrupole. Single particles can also be detected and sized if they have enough mass of a chemical component. The AMS was deployed at a ground sampling site near downtown Atlanta during August 1999, as part of the Environmental Protection Agency/Southern Oxidant Study Particulate Matter “Supersite” experiment, and at a suburban location in the Boston area during September 1999. The major observed components of the aerosol at both sites were sulfate and organics with a minor fraction of nitrate, consistent with prior studies and colocated instruments. Different aerosol chemical components often had different size distributions and time evolutions. More than half of the sulfate mass was contained in 2% of the ambient particles in one of the sampling periods. Trends in mass concentrations of sulfate and nitrate measured with the AMS in Atlanta compare well with those measured with ion chromatography-based instruments. A marked diurnal cycle was observed for aerosol nitrate in Atlanta. A simple model fit is used to illustrate the integration of data from several chemical components measured by the AMS together with data from other particle instruments into a coherent representation of the ambient aerosol.


Aerosol Science and Technology | 2005

A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field Deployment

Frank Drewnick; Silke S. Hings; P. F. DeCarlo; John T. Jayne; Marc Gonin; Katrin Fuhrer; Silke Weimer; Jose L. Jimenez; Kenneth L. Demerjian; Stephan Borrmann; Douglas R. Worsnop

We report the development and first field deployment of a new version of the Aerosol Mass Spectrometer (AMS), which is capable of measuring non-refractory aerosol mass concentrations, chemically speciated mass distributions and single particle information. The instrument was constructed by interfacing the well-characterized Aerodyne AMS vacuum system, particle focusing, sizing, and evaporation/ionization components, with a compact TOFWERK orthogonal acceleration reflectron time-of-flight mass spectrometer. In this time-of-flight aerosol mass spectrometer (TOF-AMS) aerosol particles are focused by an aerodynamic lens assembly as a narrow beam into the vacuum chamber. Non-refractory particle components flash-vaporize after impaction onto the vaporizer and are ionized by electron impact. The ions are continuously guided into the source region of the time-of-flight mass spectrometer, where ions are extracted into the TOF section at a repetition rate of 83.3 kHz. Each extraction generates a complete mass spectrum, which is processed by a fast (sampling rate 1 Gs/s) data acquisition board and a PC. Particle size information is obtained by chopping the particle beam followed by time-resolved detection of the particle evaporation events. Due to the capability of the time-of-flight mass spectrometer of measuring complete mass spectra for every extraction, complete single particle mass spectra can be collected. This mode provides quantitative information on single particle composition. The TOF-AMS allows a direct measurement of internal and external mixture of non-refractory particle components as well as sensitive ensemble average particle composition and chemically resolved size distribution measurements. Here we describe for the first time the TOF-AMS and its operation as well as results from its first field deployment during the PM 2.5 Technology Assessment and Characterization Study—New York (PMTACS-NY) Winter Intensive in January 2004 in Queens, New York. These results show the capability of the TOF-AMS to measure quantitative aerosol composition and chemically resolved size distributions of the ambient aerosol. In addition it is shown that the single particle information collected with the instrument gives direct information about internal and external mixture of particle components.


Journal of Geophysical Research | 2003

Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis

J. D. Allan; Jose L. Jimenez; P. I. Williams; M. Rami Alfarra; Keith N. Bower; John T. Jayne; Hugh Coe; Douglas R. Worsnop

Received 22 March 2002; revised 2 July 2002; accepted 5 August 2002; published 4 February 2003. [1] The aerosol mass spectrometer (AMS), manufactured by Aerodyne Research, Inc., has been shown to be capable of delivering quantitative information on the chemical composition and size of volatile and semivolatile fine airborne particulate matter with high time resolution. Analytical and software tools for interpreting the data from this instrument and generating meaningful, quantitative results have been developed and are presented here with a brief description of the instrument. These include the conversion of detected ion rates from the quadrupole mass spectrometer during the mass spectrum (MS) mode of operation to atmospheric mass concentrations of chemical species (in m gm � 3 ) by applying calibration data. It is also necessary to correct for variations in the electron multiplier performance, and a method involving the measurement of the instrument’s response to gas phase signals is also presented. The techniques for applying particle velocity calibration data and transforming signals from time of flight (TOF) mode to chemical mass distributions in terms of aerodynamic diameter (dM/dlog(Da) distributions) are also presented. It is also possible to quantify the uncertainties in both MS and TOF data by evaluating the ion counting statistics and variability of the background signal, respectively. This paper is accompanied by part 2 of this series, in which these methods are used to process and analyze AMS results on ambient aerosol from two U.K. cities at different times of the year. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0394 Atmospheric Composition and Structure: Instruments and techniques; 0399 Atmospheric Composition and Structure: General or miscellaneous; KEYWORDS: aerosols, chemical composition, mass spectrometry, analysis techniques


Aerosol Science and Technology | 2004

Chase Studies of Particulate Emissions from in-use New York City Vehicles

Manjula R. Canagaratna; John T. Jayne; David A. Ghertner; Scott C. Herndon; Q. Shi; Jose L. Jimenez; Philip J. Silva; P. I. Williams; Thomas Lanni; Frank Drewnick; Kenneth L. Demerjian; Charles E. Kolb; Douglas R. Worsnop

Emissions from motor vehicles are a significant source of fine particulate matter (PM) and gaseous pollutants in urban environments. Few studies have characterized both gaseous and PM emissions from individual in-use vehicles under real-world driving conditions. Here we describe chase vehicle studies in which on-road emissions from individual vehicles were measured in real time within seconds of their emission. This work uses an Aerodyne aerosol mass spectrometer (AMS) to provide size-resolved and chemically resolved characterization of the nonrefractory portion of the emitted PM; refractory materials such as elemental carbon (EC) were not measured in this study. The AMS, together with other gas-phase and particle instrumentation, was deployed on the Aerodyne Research Inc. (ARI) mobile laboratory, which was used to “chase” the target vehicles. Tailpipe emission indices of the targeted vehicles were obtained by referencing the measured nonrefractory particulate mass loading to the instantaneous CO2 measured simultaneously in the plume. During these studies, nonrefractory PM1.0 (NRPM1) emission indices for a representative fraction of the New York City Metropolitan Transit Authority (MTA) bus fleet were determined. Diesel bus emissions ranged from 0.10 g NRPM1/kg fuel to 0.23 g NRPM1/kg, depending on the type of engine used by the bus. The average NRPM1 emission index of diesel-powered buses using Continuously Regenerating Technology (CRT™) trap systems was 0.052 g NRPM1/kg fuel. Buses fueled by compressed natural gas (CNG) had an average emission index of 0.034 g NRPM1/kg Fuel. The mass spectra of the nonrefractory diesel aerosol components measured by the AMS were dominated by lubricating oil spectral signatures. Mass-weighted size distributions of the particles in fresh diesel exhaust plumes peak at vacuum aerodynamic diameters around 90 nm with a typical full width at half maximum of 60 nm.


Aerosol Science and Technology | 2011

An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol

Nga L. Ng; Scott C. Herndon; A. Trimborn; Manjula R. Canagaratna; Philip Croteau; Timothy B. Onasch; Donna Sueper; D. R. Worsnop; Qi Zhang; Yele Sun; John T. Jayne

We present a new instrument, the Aerosol Chemical Speciation Monitor (ACSM), which routinely characterizes and monitors the mass and chemical composition of non-refractory submicron particulate matter in real time. Under ambient conditions, mass concentrations of particulate organics, sulfate, nitrate, ammonium, and chloride are obtained with a detection limit <0.2 μg/m3 for 30 min of signal averaging. The ACSM is built upon the same technology as the widely used Aerodyne Aerosol Mass Spectrometer (AMS), in which an aerodynamic particle focusing lens is combined with high vacuum thermal particle vaporization, electron impact ionization, and mass spectrometry. Modifications in the ACSM design, however, allow it to be smaller, lower cost, and simpler to operate than the AMS. The ACSM is also capable of routine stable operation for long periods of time (months). Results from a field measurement campaign in Queens, NY where the ACSM operated unattended and continuously for 8 weeks, are presented. ACSM data is analyzed with the same well-developed techniques that are used for the AMS. Trends in the ACSM mass concentrations observed during the Queens, NY study compare well with those from co-located instruments. Positive Matrix Factorization (PMF) of the ACSM organic aerosol spectra extracts two components: hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA). The mass spectra and time trends of both components correlate well with PMF results obtained from a co-located high resolution time-of-flight AMS instrument.


Aerosol Science and Technology | 2004

Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: Application to combustion-generated soot aerosols as a function of fuel equivalence ratio

Jay G. Slowik; K. Stainken; P. Davidovits; Leah R. Williams; John T. Jayne; Charles E. Kolb; Douglas R. Worsnop; Yinon Rudich; P. F. DeCarlo; Jose L. Jimenez

Composition, shape factor, size, and fractal dimension of soot aerosol particles generated in a propane/O2, flame were determined as a function of the fuel equivalence ratio (φ). Soot particles were first size-selected by a differential mobility analyzer (DMA) and then analyzed by an Aerodyne aerosol mass spectrometer (AMS). The DMA provides particles of known mobility diameter (dm ). The AMS quantitatively measures the mass spectrum of the nonrefractory components of the particles and also provides the vacuum aerodynamic diam eter (dva ) corresponding to the particles of known mobility diameter. The measured dm, dva , and nonrefractory composition are used in a system of equations based on the formulation presented in the companion article to estimate the particle dynamic shape factor, total mass, and black carbon (BC) content. Fractal dimension was estimated based on the mass-mobility relationship. Two types of soot particles were observed depending on the fuel equivalence ratio. Type 1: for φ < 4 (lower propane/O2), dva ; was nearly constant and independent of dm . The value of dva increased with increasing φ. Analysis of the governing equations showed that these particles were highly irregular (likely fractal aggregates), with a dynamic shape factor that increased with dm and φ. The fractal dimension of these particles was approximately 1.7. These particles were composed mostly of BC, with the organic carbon content increasing as φ increased. At φ = 1.85, the particles were about 90% BC, 5% PAH, and 5% aliphatic hydrocarbon (particle density = 1.80 g/cm3). Type 2: for φ > 4 (high propane/O2), dva was linearly proportional to dm . Analysis of the governing equations showed that these particles were nearly spherical (likely compact aggregates), with a dynamic shape factor of 1.1 (versus 1 for a sphere) and a fr actal dimension of 2.95 (3 for a sphere). These particles were composed of about 50% PAH, 45% BC, and 5% aliphatic hydrocarbons (particle density = 1.50 g/cm3). These results help interpret some measurement s obtained in recent field studies.


Aerosol Science and Technology | 2007

Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer

Peter S. K. Liu; Rensheng Deng; Kenneth A. Smith; Leah R. Williams; John T. Jayne; Manjula R. Canagaratna; Kori Moore; Timothy B. Onasch; Douglas R. Worsnop; Terry Deshler

The size-dependent particle transmission efficiency of the aerodynamic lens system used in the Aerodyne Aerosol Mass Spectrometer (AMS) was investigated with computational fluid dynamics (CFD) calculations and experimental measurements. The CFD calculations revealed that the entire lens system, including the aerodynamic lens itself, the critical orifice which defines the operating lens pressure, and a valve assembly, needs to be considered. Previous calculations considered only the aerodynamic lens. The calculations also investigated the effect of operating the lens system at two different sampling pressures, 7.8 × 104 Pa (585 torr) and 1.0 × 105 Pa (760 torr). Experimental measurements of transmission efficiency were performed with size-selected diethyl hexyl sebacate (DEHS), NH4NO3, and NaNO3 particles on three different AMS instruments at two different ambient sampling pressures (7.8 × 104 Pa, 585 torr and 1.0 × 105 Pa, 760 torr). Comparisons of the measurements and the calculations show qualitative agreement, but there are significant deviations which are as yet unexplained. On the small size end (30 nm to 150 nm vacuum aerodynamic diameter), the measured transmission efficiency is lower than predicted. On the large size end (> 350 nm vacuum aerodynamic diameter) the measured transmission efficiency is greater than predicted at 7.8 × 104 Pa (585 torr) and in good agreement with the prediction at 1.0 × 105 Pa (760 torr).

Collaboration


Dive into the John T. Jayne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjula R. Canagaratna

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugh Coe

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

J. D. Allan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Keith N. Bower

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge