Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John T. Jones is active.

Publication


Featured researches published by John T. Jones.


Nature Biotechnology | 2008

Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita

Pierre Abad; Jérôme Gouzy; Jean-Marc Aury; Philippe Castagnone-Sereno; Etienne Danchin; Emeline Deleury; Laetitia Perfus-Barbeoch; Véronique Anthouard; François Artiguenave; Vivian C Blok; Marie-Cécile Caillaud; Pedro M. Coutinho; Corinne Dasilva; Francesca De Luca; Florence Deau; Magali Esquibet; Timothé Flutre; Jared V. Goldstone; Noureddine Hamamouch; Tarek Hewezi; Olivier Jaillon; Claire Jubin; Paola Leonetti; Marc Magliano; Tom Maier; Gabriel V. Markov; Paul McVeigh; Julie Poulain; Marc Robinson-Rechavi; Erika Sallet

Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall–degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.


FEBS Letters | 2004

A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus

Taisei Kikuchi; John T. Jones; Takuya Aikawa; Hajime Kosaka; Nobuo Ogura

We have characterized a family of GHF45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. The absence of such genes from other nematodes and their similarity to fungal genes suggests that they may have been acquired by horizontal gene transfer (HGT) from fungi. The cell wall degrading enzymes of other plant parasitic nematodes may have been acquired by HGT from bacteria. B. xylophilus is not directly related to other plant parasites and our data therefore suggest that horizontal transfer of cell wall degrading enzymes has played a key role in evolution of plant parasitism by nematodes on more than one occasion.


Nature | 2004

Plant degradation: A nematode expansin acting on plants

Ling Qin; Urszula Kudla; Erwin Roze; Aska Goverse; Herman Popeijus; Jeroen Nieuwland; Hein Overmars; John T. Jones; Arjen Schots; Geert Smant; Jaap Bakker; Johannes Helder

Expansin proteins, which have so far been identified only in plants, rapidly induce extension of plant cell walls by weakening the non-covalent interactions that help to maintain their integrity. Here we show that an animal, the plant-parasitic roundworm Globodera rostochiensis, can also produce a functional expansin, which it uses to loosen cell walls when invading its host plant. As this nematode is known to be able to disrupt covalent bonds in plant cell walls, its accompanying ability to loosen non-covalent bonds challenges the prevailing view that animals are genetically poorly equipped to degrade plant cell walls.


Molecular Plant-microbe Interactions | 2005

Functional Analysis of Pathogenicity Proteins of the Potato Cyst Nematode Globodera rostochiensis Using RNAi

Qing Chen; Sajid Rehman; Geert Smant; John T. Jones

RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted beta-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the beta-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.


Annual Review of Phytopathology | 2009

RNAi and functional genomics in plant parasitic nematodes.

Marie-Noëlle Rosso; John T. Jones; P. Abad

Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses.


Molecular Plant-microbe Interactions | 2011

Horizontal gene transfer in nematodes: a catalyst for plant parasitism?

Annelies Haegeman; John T. Jones; Etienne Danchin

The origin of plant parasitism within the phylum Nematoda is intriguing. The ability to parasitize plants has originated independently at least three times during nematode evolution and, as more molecular data has emerged, it has become clear that multiple instances of horizontal gene transfer (HGT) from bacteria and fungi have played a crucial role in the nematodes adaptation to this new lifestyle. The first reported HGT cases in plant-parasitic nematodes were genes encoding plant cell wall-degrading enzymes. Other putative examples of HGT were subsequently described, including genes that may be involved in the modulation of the plants defense system, the establishment of a nematode feeding site, and the synthesis or processing of nutrients. Although, in many cases, it is difficult to pinpoint the donor organism, candidate donors are usually soil dwelling and are either plant-pathogenic or plant-associated microorganisms, hence occupying the same ecological niche as the nematodes. The exact mechanisms of transfer are unknown, although close contacts with donor microorganisms, such as symbiotic or trophic interactions, are a possibility. The widespread occurrence of horizontally transferred genes in evolutionarily independent plant-parasitic nematode lineages suggests that HGT may be a prerequisite for successful plant parasitism in nematodes.


Molecular Plant Pathology | 2005

A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans.

Stephen C. Whisson; Anna O. Avrova; Pieter van West; John T. Jones

SUMMARY Gene silencing, triggered by double-stranded RNA (dsRNA), has proved to be a valuable tool for determining and confirming the function of genes in many organisms. For Phytophthora infestans, the cause of late blight on potato and tomato, gene silencing strategies have relied on stable transformation followed by spontaneous silencing of both the endogenous gene and the transgene. Here we describe the first application of transient gene silencing in P. infestans, by delivering in vitro synthesized dsRNA into protoplasts to trigger silencing. A marker gene, gfp, and two P. infestans genes, inf1 and cdc14, both of which have been silenced previously, were selected to test this strategy. Green fluorescent protein (GFP) fluorescence was reduced in regenerating protoplasts up to 4 days after exposure to gfp dsRNA. A secondary reduction in expression of all genes tested was not fully activated until 12-17 days after introduction of the respective homologous dsRNAs. At this time after exposure to dsRNA, reduced GFP fluorescence in gfp dsRNA-treated lines, and reduced INF1 production in inf1 dsRNA-treated lines, was observed. Introduction of dsRNA for the stage-specific gene, cdc14, yielded the expected phenotype of reduced numbers of sporangia when cdc14 expression was significantly reduced compared with control lines. Silencing was shown to be sequence-specific, because analysis of inf1 expression in gfp-silenced lines yielded wild-type levels of gene expression. This report shows that transient gene silencing can be used to generate detectable phenotypes in P. infestans and should provide a high-throughput tool for P. infestans functional genomics.


Biochemical Journal | 2001

A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern

Alison Prior; John T. Jones; Vivian C. Blok; Jeremy Beauchamp; Lindsay McDermott; Alan Cooper; Malcolm W. Kennedy

Parasitic nematodes produce at least two structurally novel classes of small helix-rich retinol- and fatty-acid-binding proteins that have no counterparts in their plant or animal hosts and thus represent potential targets for new nematicides. Here we describe a protein (Gp-FAR-1) from the plant-parasitic nematode Globodera pallida, which is a member of the nematode-specific fatty-acid- and retinol-binding (FAR) family of proteins but localizes to the surface of this species, placing it in a strategic position for interaction with the host. Recombinant Gp-FAR-1 was found to bind retinol, cis-parinaric acid and the fluorophore-tagged lipids 11-(dansylamino)undecanoic acid and dansyl-D,L-alpha-amino-octanoic acid. The fluorescence emission characteristics of the dansylated analogues indicated that the entire ligand enters the binding cavity. Fluorescence competition experiments showed that Gp-FAR-1 binds fatty acids in the range C(11) to C(24), with optimal binding at C(15). Intrinsic fluorescence analysis of a mutant protein into which a tryptophan residue had been inserted supported computer-based predictions of the position of this residue at the proteins interior and possibly also at the binding site. Of direct relevance to plant defence systems was the observation that Gp-FAR-1 binds two lipids (linolenic and linoleic acids) that are precursors of plant defence compounds and the jasmonic acid signalling pathway. Moreover, Gp-FAR-1 was found to inhibit the lipoxygenase-mediated modification of these substrates in vitro. Thus not only does Gp-FAR-1 function as a broad-spectrum retinol- and fatty-acid-binding protein, the results are consistent with the idea that Gp-FAR-1 is involved in the evasion of primary host plant defence systems.


Biochemical Journal | 2005

Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria

Taisei Kikuchi; Hajime Shibuya; John T. Jones

We report the cloning and functional characterization of an endo-beta-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. This is the first gene of this type from any nematode species. We show that a similar cDNA is also present in another closely related species B. mucronatus, but that similar sequences are not present in any other nematode studied to date. The B. xylophilus gene is expressed solely in the oesophageal gland cells of the nematode and the protein is present in the nematodes secretions. The deduced amino acid sequence of the gene is very similar to glycosyl hydrolase family 16 proteins. The recombinant protein, expressed in Escherichia coli, preferentially hydrolysed the beta-1,3-glucan laminarin, and had very low levels of activity on beta-1,3-1,4-glucan, lichenan and barley beta-glucan. Laminarin was degraded in an endoglucanase mode by the enzyme. The optimal temperature and pH for activity of the recombinant enzyme were 65 degrees C and pH 4.9. The protein is probably important in allowing the nematodes to feed on fungi. Sequence comparisons suggest that the gene encoding the endo-beta-1,3-glucanase was acquired by horizontal gene transfer from bacteria. B. xylophilus therefore contains genes that have been acquired by this process from both bacteria and fungi. These findings support the idea that multiple independent horizontal gene transfer events have helped in shaping the evolution of several different life strategies in nematodes.


Molecular Plant Pathology | 2008

Bursaphelenchus xylophilus: opportunities in comparative genomics and molecular host-parasite interactions.

John T. Jones; Maurice Moens; Manuel Mota; Hongmei Li; Taisei Kikuchi

Most Bursaphelenchus species are fungal feeding nematodes that colonize dead or dying trees. However, Bursaphelenchus xylophilus, the pine wood nematode, is also a pathogen of trees and is the causal agent of pine wilt disease. B. xylophilus is native to North America and here it causes little damage to trees. Where it is introduced to new regions it causes huge damage. The most severely affected areas are found in the Far East but more recently B. xylophilus has been introduced into Portugal and the potential for damage here is also high. As incidence and severity of pine wilt disease are linked to temperature we suggest that climate change is likely to exacerbate the problems caused by B. xylophilus and, in addition, will extend (northwards in Europe) the range in which pine wilt disease can occur. Here we review what is currently known about the interactions of B. xylophilus with its hosts, including recent developments in our understanding of the molecular biology of pathogenicity in the nematode. We also examine the potential developments that could be made by more widespread use of genomics tools to understand interactions between B. xylophilus, bacterial pathogens that have been implicated in disease and host trees.

Collaboration


Dive into the John T. Jones's collaboration.

Top Co-Authors

Avatar

Geert Smant

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Phillips

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar

Herman Popeijus

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Johannes Helder

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jaap Bakker

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Qing Chen

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar

Aska Goverse

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hein Overmars

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge