Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John T. M. Kennis is active.

Publication


Featured researches published by John T. M. Kennis.


Nature | 2007

Identification of a mechanism of photoprotective energy dissipation in higher plants

Alexander V. Ruban; Rudi Berera; Cristian Ilioaia; Ivo H. M. van Stokkum; John T. M. Kennis; Andrew A. Pascal; Herbert van Amerongen; Bruno Robert; Peter Horton; Rienk van Grondelle

Under conditions of excess sunlight the efficient light-harvesting antenna found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat, a process measured as the non-photochemical quenching of chlorophyll fluorescence or qE. Although the biological significance of qE is established, the molecular mechanisms involved are not. LHCII, the main light-harvesting complex, has an inbuilt capability to undergo transformation into a dissipative state by conformational change and it was suggested that this provides a molecular basis for qE, but it is not known if such events occur in vivo or how energy is dissipated in this state. The transition into the dissipative state is associated with a twist in the configuration of the LHCII-bound carotenoid neoxanthin, identified using resonance Raman spectroscopy. Applying this technique to study isolated chloroplasts and whole leaves, we show here that the same change in neoxanthin configuration occurs in vivo, to an extent consistent with the magnitude of energy dissipation. Femtosecond transient absorption spectroscopy, performed on purified LHCII in the dissipative state, shows that energy is transferred from chlorophyll a to a low-lying carotenoid excited state, identified as one of the two luteins (lutein 1) in LHCII. Hence, it is experimentally demonstrated that a change in conformation of LHCII occurs in vivo, which opens a channel for energy dissipation by transfer to a bound carotenoid. We suggest that this is the principal mechanism of photoprotection.


Photosynthesis Research | 2009

Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

Rudi Berera; Rienk van Grondelle; John T. M. Kennis

The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment–protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.


Proceedings of the National Academy of Sciences of the United States of America | 2001

An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna

Claudiu C. Gradinaru; John T. M. Kennis; Emmanouil Papagiannakis; Ivo H. M. van Stokkum; Richard J. Cogdell; Graham R. Fleming; Robert A. Niederman; Rienk van Grondelle

Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A photoactive carotenoid protein acting as light intensity sensor

Adjélé Wilson; Claire Punginelli; Andrew Gall; Cosimo Bonetti; Maxime T. A. Alexandre; Jean-Marc Routaboul; Cheryl A. Kerfeld; Rienk van Grondelle; Bruno Robert; John T. M. Kennis; Diana Kirilovsky

Intense sunlight is dangerous for photosynthetic organisms. Cyanobacteria, like plants, protect themselves from light-induced stress by dissipating excess absorbed energy as heat. Recently, it was discovered that a soluble orange carotenoid protein, the OCP, is essential for this photoprotective mechanism. Here we show that the OCP is also a member of the family of photoactive proteins; it is a unique example of a photoactive protein containing a carotenoid as the photoresponsive chromophore. Upon illumination with blue-green light, the OCP undergoes a reversible transformation from its dark stable orange form to a red “active” form. The red form is essential for the induction of the photoprotective mechanism. The illumination induces structural changes affecting both the carotenoid and the protein. Thus, the OCP is a photoactive protein that senses light intensity and triggers photoprotection.


Proceedings of the National Academy of Sciences of the United States of America | 2002

An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting

Emmanouil Papagiannakis; John T. M. Kennis; Ivo H. M. van Stokkum; Richard J. Cogdell; Rienk van Grondelle

Blue and green sunlight become available for photosynthetic energy conversion through the light-harvesting (LH) function of carotenoids, which involves transfer of carotenoid singlet excited states to nearby (bacterio)chlorophylls (BChls). The excited-state manifold of carotenoids usually is described in terms of two singlet states, S1 and S2, of which only the latter can be populated from the ground state by the absorption of one photon. Both states are capable of energy transfer to (B)Chl. We recently showed that in the LH1 complex of the purple bacterium Rhodospirillum rubrum, which is rather inefficient in carotenoid-to-BChl energy transfer, a third additional carotenoid excited singlet state is formed. This state, which we termed S*, was found to be a precursor on an ultrafast fission reaction pathway to carotenoid triplet state formation. Here we present evidence that S* is formed with significant yield in the LH2 complex of Rhodobacter sphaeroides, which has a highly efficient carotenoid LH function. We demonstrate that S* is actively involved in the energy transfer process to BChl and thus have uncovered an alternative pathway of carotenoid-to-BChl energy transfer. In competition with energy transfer to BChl, fission occurs from S*, leading to ultrafast formation of carotenoid triplets. Analysis in terms of a kinetic model indicates that energy transfer through S* accounts for 10–15% of the total energy transfer to BChl, and that inclusion of this pathway is necessary to obtain a highly efficient LH function of carotenoids.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Uncovering the hidden ground state of green fluorescent protein

John T. M. Kennis; Delmar S. Larsen; Ivo H. M. van Stokkum; Mikas Vengris; Jasper J. van Thor; Rienk van Grondelle

The fluorescence properties of GFP are strongly influenced by the protonation states of its chromophore and nearby amino acid side chains. In the ground state, the GFP chromophore is neutral and absorbs in the near UV. Upon excitation, the chromophore is deprotonated, and the resulting anionic chromophore emits its green fluorescence. So far, only excited-state intermediates have been observed in the GFP photocycle. We have used ultrafast multipulse control spectroscopy to prepare and directly observe GFPs hidden anionic ground-state intermediates as an integral part of the photocycle. Combined with dispersed multichannel detection and advanced global analysis techniques, the existence of two distinct anionic ground-state intermediates, I1 and I2, has been unveiled. I1 and I2 absorb at 500 and 497 nm, respectively, and interconvert on a picosecond timescale. The I2 intermediate has a lifetime of 400 ps, corresponding to a proton back-transfer process that regenerates the neutral ground state. Hydrogen/deuterium exchange of the protein leads to a significant increase of the I1 and I2 lifetimes, indicating that proton motion underlies their dynamics. We thus have assessed the complete chain of reaction intermediates and associated timescales that constitute the photocycle of GFP. Many elementary processes in biology rely on proton transfers that are limited by slow diffusional events, which seriously precludes their characterization. We have resolved the true reaction rate of a proton transfer in the molecular ground state of GFP, and our results may thus aid in the development of a generic understanding of proton transfer in biology.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome

K. C. Toh; Emina A. Stojković; Ivo H. M. van Stokkum; Keith Moffat; John T. M. Kennis

Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. The phytochrome light activation mechanism involves isomerization around the C15═C16 double bond of an open-chain tetrapyrrole chromophore, resulting in a flip of its D-ring. In an important new development, bacteriophytochrome (Bph) has been engineered for use as a fluorescent marker in mammalian tissues. Here we report that an unusual Bph, RpBphP3 from Rhodopseudomonas palustris, denoted P3, is fluorescent. This Bph modulates synthesis of light-harvesting complex in combination with a second Bph exhibiting classical photochemistry, RpBphP2, denoted P2. We identify the factors that determine the fluorescence and isomerization quantum yields through the application of ultrafast spectroscopy to wild-type and mutants of P2 and P3. The excited-state lifetime of the biliverdin chromophore in P3 was significantly longer at 330–500 ps than in P2 and other classical phytochromes and accompanied by a significantly reduced isomerization quantum yield. H/D exchange reduces the rate of decay from the excited state of biliverdin by a factor of 1.4 and increases the isomerization quantum yield. Comparison of the properties of the P2 and P3 variants shows that the quantum yields of fluorescence and isomerization are determined by excited-state deprotonation of biliverdin at the pyrrole rings, in competition with hydrogen-bond rupture between the D-ring and the apoprotein. This work provides a basis for structure-based conversion of Bph into an efficient near-IR fluorescent marker.


Biophysical Journal | 2008

Hydrogen Bond Switching among Flavin and Amino Acid Side Chains in the BLUF Photoreceptor Observed by Ultrafast Infrared Spectroscopy

Cosimo Bonetti; Tilo Mathes; Ivo H. M. van Stokkum; Katharine M. Mullen; Marie Louise Groot; Rienk van Grondelle; Peter Hegemann; John T. M. Kennis

BLUF domains constitute a recently discovered class of photoreceptor proteins found in bacteria and eukaryotic algae. BLUF domains are blue-light sensitive through a FAD cofactor that is involved in an extensive hydrogen-bond network with nearby amino acid side chains, including a highly conserved tyrosine and glutamine. The participation of particular amino acid side chains in the ultrafast hydrogen-bond switching reaction with FAD that underlies photoactivation of BLUF domains is assessed by means of ultrafast infrared spectroscopy. Blue-light absorption by FAD results in formation of FAD(*-) and a bleach of the tyrosine ring vibrational mode on a picosecond timescale, showing that electron transfer from tyrosine to FAD constitutes the primary photochemistry. This interpretation is supported by the absence of a kinetic isotope effect on the fluorescence decay on H/D exchange. Subsequent protonation of FAD(*-) to result in FADH(*) on a picosecond timescale is evidenced by the appearance of a N-H bending mode at the FAD N5 protonation site and of a FADH(*) C=N stretch marker mode, with tyrosine as the likely proton donor. FADH(*) is reoxidized in 67 ps (180 ps in D(2)O) to result in a long-lived hydrogen-bond switched network around FAD. This hydrogen-bond switch shows infrared signatures from the C-OH stretch of tyrosine and the FAD C4=O and C=N stretches, which indicate increased hydrogen-bond strength at all these sites. The results support a previously hypothesized rotation of glutamine by approximately 180 degrees through a light-driven radical-pair mechanism as the determinant of the hydrogen-bond switch.


Biochemistry | 2009

The Role of Key Amino Acids in the Photoactivation Pathway of the Synechocystis Slr1694 BLUF Domain

Cosimo Bonetti; Manuela Stierl; Tilo Mathes; Ivo H. M. van Stokkum; Katharine M. Mullen; Thomas A. Cohen-Stuart; Rienk van Grondelle; Peter Hegemann; John T. M. Kennis

BLUF (blue light sensing using FAD) domains belong to a novel group of blue light sensing receptor proteins found in microorganisms. We have assessed the role of specific aromatic and polar residues in the Synechocystis Slr1694 BLUF protein by investigating site-directed mutants with substitutions Y8W, W91F, and S28A. The W91F and S28A mutants formed the red-shifted signaling state upon blue light illumination, whereas in the Y8W mutant, signaling state formation was abolished. The W91F mutant shows photoactivation dynamics that involve the successive formation of FAD anionic and neutral semiquinone radicals on a picosecond time scale, followed by radical pair recombination to result in the long-lived signaling state in less than 100 ps. The photoactivation dynamics and quantum yield of signaling state formation were essentially identical to those of wild type, which indicates that only one significant light-driven electron transfer pathway is available in Slr1694, involving electron transfer from Y8 to FAD without notable contribution of W91. In the S28A mutant, the photoactivation dynamics and quantum yield of signaling state formation as well as dark recovery were essentially the same as in wild type. Thus, S28 does not play an essential role in the initial hydrogen bond switching reaction in Slr1694 beyond an influence on the absorption spectrum. In the Y8W mutant, two deactivation branches upon excitation were identified: the first involves a neutral semiquinone FADH(*) that was formed in approximately 1 ps and recombines in 10 ps and is tentatively assigned to a FADH(*)-W8(*) radical pair. The second deactivation branch forms FADH(*) in 8 ps and evolves to FAD(*-) in 200 ps, which recombines to the ground state in about 4 ns. In the latter branch, W8 is tentatively assigned as the FAD redox partner as well. Overall, the results are consistent with a photoactivation mechanism for BLUF domains where signaling state formation proceeds via light-driven electron and proton transfer from Y8 to FAD, followed by a hydrogen bond rearrangement and radical pair recombination.


Journal of the American Chemical Society | 2011

Carotenoid Photoprotection in Artificial Photosynthetic Antennas

Miroslav Kloz; Smitha Pillai; Gerdenis Kodis; Devens Gust; Thomas A. Moore; Ana L. Moore; Rienk van Grondelle; John T. M. Kennis

A series of phthalocyanine-carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S(1) signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S(1) state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno-phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car-Pc electron transfer and recombination; (ii)(1) Pc to Car S(1) energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between (1)Pc and Car S(1) and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment. These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.

Collaboration


Dive into the John T. M. Kennis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tilo Mathes

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Devens Gust

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana L. Moore

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Peter Hegemann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge