John T. Mackie
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John T. Mackie.
Biochemical Journal | 2005
Gregory G. Martin; Barbara P. Atshaves; Avery L. McIntosh; John T. Mackie; Ann B. Kier; Friedhelm Schroeder
Although the physiological roles of the individual bile acid synthetic enzymes have been extensively examined, relatively little is known regarding the function of intracellular bile acid-binding proteins. Male L-FABP (liver fatty-acid-binding protein) gene-ablated mice were used to determine a role for L-FABP, the major liver bile acid-binding protein, in bile acid and biliary cholesterol metabolism. First, in control-fed mice L-FABP gene ablation alone increased the total bile acid pool size by 1.5-fold, especially in gall-bladder and liver, but without altering the proportions of bile acid, cholesterol and phospholipid. Loss of liver L-FABP was more than compensated by up-regulation of: other liver cytosolic bile acid-binding proteins [GST (glutathione S-transferase), 3alpha-HSD (3alpha-hydroxysteroid dehydrogenase)], key hepatic bile acid synthetic enzymes [CYP7A1 (cholesterol 7alpha-hydroxylase) and CYP27A1 (sterol 27alpha-hydroxylase)], membrane bile acid translocases [canalicular BSEP (bile salt export pump), canalicular MRP2 (multidrug resistance associated protein 2), and basolateral/serosal OATP-1 (organic anion transporting polypeptide 1)], and positive alterations in nuclear receptors [more LXRalpha (liver X receptor alpha) and less SHP (short heterodimer partner)]. Secondly, L-FABP gene ablation reversed the cholesterol-responsiveness of bile acid metabolic parameters such that total bile acid pool size, especially in gall-bladder and liver, was reduced 4-fold, while the mass of biliary cholesterol increased 1.9-fold. The dramatically reduced bile acid levels in cholesterol-fed male L-FABP (-/-) mice were associated with reduced expression of: (i) liver cytosolic bile acid-binding proteins (L-FABP, GST and 3alpha-HSD), (ii) hepatic bile acid synthetic enzymes [CYP7A1, CYP27A1 and SCP-x (sterol carrier protein-x/3-ketoacyl-CoA thiolase)] concomitant with decreased positive nuclear receptor alterations (i.e. less LXRalpha and more SHP), and (iii) membrane bile acid transporters (BSEP, MRP2 and OATP-1). These are the first results suggesting a physiological role for the major cytosolic bile acid-binding protein (L-FABP) in influencing liver bile metabolic phenotype and gall-bladder bile lipids of male mice, especially in response to dietary cholesterol.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2005
Evans Afriyie-Gyawu; John T. Mackie; Bhagirathi Dash; Melinda C. Wiles; John F. Taylor; Henry J. Huebner; Lili Tang; Hongxia Guan; Jia-Sheng Wang; Timothy D. Phillips
NovaSil (NS) clay, a common anti-caking agent in animal feeds, has been shown to sorb aflatoxins in the GI tract and diminish their bioavailability and adverse effects in short-term animal studies. Based on this evidence, it is hypothesized that clay-based enterosorption of aflatoxins may be a useful strategy for the prevention of aflatoxicosis in human populations. However, the potential toxicity of long-term dietary exposure to NS has not been determined. In this research, 5–6-week-old male and female Sprague-Dawley rats were fed rations containing 0, 0.25, 0.5, 1.0, or 2.0% (w/w) levels of NS for 28 weeks. Analysis of the NS showed negligible levels of dioxin and furan contaminants. Total feed consumption, cumulative feed consumption, body weight, total body weight gain, feed conversion efficiency, cumulative feed conversion efficiency, and relative organ weights were unaffected in either sex at the doses tested. No NS-dependent differences in relative organ weights or gross or histopathological changes were observed. Analysis of hematological parameters, clinical chemistry, and selected vitamin and mineral levels revealed isolated significant differences between some treatments and control groups (mean corpuscular hemoglobin, serum Ca, serum vitamin A, and serum Fe). However, the differences observed in each case were not dose-dependent. These results suggest that dietary inclusion of NS at levels as high as 2.0% (w/w) does not result in overt toxicity. These findings (as well as others) support the use of NS clay for dietary intervention studies in human populations at high risk for aflatoxicosis.
Tuberculosis | 2008
Shannon Sedberry Allen; John T. Mackie; Karen E. Russell; Amminikutty Jeevan; Troy A. Skwor; David N. McMurray
The predominant extrapulmonary form of tuberculosis, which develops in 10% of diseased individuals, is pleurisy. The immune response mounted against Mycobacterium tuberculosis in the pleural cavity is one that is sufficient for clearing the organism without therapeutic intervention. Thus, examining the role of immune constituents in this context will provide understanding of the vital role they play in controlling tuberculosis. In this study, experimental tuberculous pleurisy was induced in guinea pigs, and anti-TGF-beta was administered intrapleurally to the guinea pigs daily throughout the study (8 days). Neutralizing TGF-beta resulted in a significant reduction in the percentage of lymphocytes and CD8+ cells present in the pleural exudate, decreased proliferative responses of pleural cells to ConA and PPD, and decreased mRNA expression of IFN-gamma and CCL5 in pleural effusion cells. Conversely, the percentage of neutrophils was significantly increased in anti-TGF-beta-treated guinea pigs, along with upregulated mRNA expression of CXCL8. The percentage of macrophages in the pleural exudate, TNF-alpha and IL-12p40 mRNA expression, and the histopathological response were not significantly altered. While TGF-beta is generally thought of as an immunosuppressive cytokine, the results of this study demonstrate its importance in promoting an inflammatory response, and highlight its bipolar nature.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2015
Devon Klipsic; Danilo Landrock; Gregory G. Martin; Avery L. McIntosh; Kerstin K. Landrock; John T. Mackie; Friedhelm Schroeder; Ann B. Kier
While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism.
Veterinary Pathology | 2003
John T. Mackie; J. L. O'Rourke
Subclinical gastritis was observed in 10 of 10 baboons (Papio spp.) from a toxicity study in a research facility. The lesions were similar in xenobiotic-treated and control animals, suggesting a spontaneous rather than chemical-induced disease. Histologic examination revealed lymphoplasmacytic gastritis in the antral mucosa. The fundic mucosa contained minor, scattered aggregates of lymphocytes and plasma cells. A Warthin-Starry silver stain and ultrastructural examination revealed numerous spiral-shaped bacteria morphologically resembling Helicobacter pylori in antral glands and numerous spiral-shaped bacteria morphologically consistent with H. heilmannii-like organisms in fundic glands. Polymerase chain reaction assay of paraffin-embedded antral and fundic tissue using primers for the urease gene and 16S ribosomal ribonucleic acid gene amplified deoxyribonucleic acid fragments with a high degree of sequence homology for H. pylori and H. heilmannii. This is the first report of gastritis associated with Helicobacter-like organisms in baboons.
Journal of Veterinary Diagnostic Investigation | 2006
Jairo Nunes; John T. Mackie; Matti Kiupel
A 3.5-year-old Thoroughbred mare presented at necropsy with a large mass at the root of the mesentery and multiple smaller mesenteric masses. The mucosa of the small intestine contained numerous raised nodules. Histologic examination revealed severe granulomatous mesenteric lymphadenitis and enteritis. Epithelioid macrophages and multinucleated giant cells frequently contained numerous intracytoplasmic yeast organisms, which were strongly positive on immunohistochemical staining when using a polyclonal antibody against Histoplasma spp. A diagnosis of abdominal histoplasmosis was made based on the gross, microscopic, and immunohistochemical findings.
Veterinary Pathology | 2005
A. Berrocal; D. L. Montgomery; John T. Mackie; R. W. Storts
A variety of embryonal tumors of the central nervous system, typically malignant and occurring in young individuals, are recognized in humans and animals. This report describes an invasive subdural but predominantly extramedullary primitive neuroectodermal tumor developing at the lumbosacral junction in a 6-month-old Brahman crossbred calf. The tumor was composed of spindloid embryonal cells organized in interlacing fascicles. The cells had oval to elongate or round hyperchromic nuclei, single to double nucleoli, and scant discernible cytoplasm. Immunohistochemical staining for neuron-specific enolase, synaptophysin, and S-100 protein and formation of pseudorosettes suggested neuronal and possibly ependymal differentiation.
Journal of Lipid Research | 2017
Gregory G. Martin; Danilo Landrock; Sarah Chung; Lawrence J. Dangott; Avery L. McIntosh; John T. Mackie; Ann B. Kier; Friedhelm Schroeder
Upregulation of the hepatic endocannabinoid (EC) receptor [cannabinoid receptor-1 (CB1)] and arachidonoylethanolamide (AEA) is associated with nonalcoholic fatty liver disease (NAFLD). Male mice fed high-fat diet (HFD) ad libitum also exhibit NAFLD, increased hepatic AEA, and obesity. But, preference for HFD complicates interpretation and almost nothing is known about these effects in females. These issues were addressed by pair-feeding HFD. Similarly to ad libitum-fed HFD, pair-fed HFD also increased WT male and female mouse fat tissue mass (FTM), but preferentially at the expense of lean tissue mass. In contrast, pair-fed HFD did not elicit NAFLD in WT mice regardless of sex. Concomitantly, pair-fed HFD oppositely impacted hepatic AEA, 2-arachidonoyl glycerol, and/or CB1 in WT males versus females. In pair-fed HFD mice, liver FA binding protein-1 (Fabp1) gene ablation (LKO): i) exacerbated FTM in both sexes; ii) did not elicit liver neutral lipid accumulation in males and only slightly in females; iii) increased liver AEA in males, but decreased it in females; and iv) decreased CB1 only in males. Thus, pair-fed HFD selectively impacted hepatic ECs more in females, but did not elicit NAFLD in either sex. These effects were modified by LKO consistent with FABP1’s ability to impact EC and FA metabolism.
Biochimica et Biophysica Acta | 2017
Sherrelle Milligan; Gregory G. Martin; Danilo Landrock; Avery L. McIntosh; John T. Mackie; Friedhelm Schroeder; Ann B. Kier
In vitro studies suggest that liver fatty acid binding protein (L-FABP) and sterol carrier protein-2/sterol carrier protein-x (SCP2/SCPx) gene products facilitate uptake and metabolism and detoxification of dietary-derived phytol in mammals. However, concomitant upregulation of L-FABP in SCP2/SCPx null mice complicates interpretation of their physiological phenotype. Therefore, the impact of ablating both the L-FABP gene and SCP2/SCPx gene (L-FABP/SCP2/SCPx null or TKO) was examined in phytol-fed female wild-type (WT) and TKO mice. TKO increased hepatic total lipid accumulation, primarily phospholipid, by mechanisms involving increased hepatic levels of proteins in the phospholipid synthetic pathway. Concomitantly, TKO reduced expression of proteins in targeting fatty acids towards the triacylglycerol synthetic pathway. Increased hepatic lipid accumulation was not associated with any concomitant upregulation of membrane fatty acid transport/translocase proteins involved in fatty acid uptake (FATP2, FATP4, FATP5 or GOT) or cytosolic proteins involved in fatty acid intracellular targeting (ACBP). In addition, TKO exacerbated dietary phytol-induced whole body weight loss, especially lean tissue mass. Since individually ablating SCPx or SCP2/SCPx elicited concomitant upregulation of L-FABP, these findings with TKO mice help to resolve the contributions of SCP2/SCPx gene ablation on dietary phytol-induced whole body and hepatic lipid phenotype independent of concomitant upregulation of L-FABP.
Frontiers in Pharmacology | 2017
Arjun Muralidharan; Thomas S. W. Park; John T. Mackie; Luiz G. S. Gimenez; Andy Kuo; Janet Rachel Nicholson; Laura Corradini; Maree T. Smith
Chronic low back pain (LBP), the leading cause of disability globally, is notoriously difficult to treat. Most rodent models of LBP mimic lumbar radicular pain rather than mechanical LBP. Here, we describe establishment of a new rat model of mechanical LBP that is devoid of a neuropathic component. Groups of adult male Sprague Dawley rats were anesthetized and their lumbar L4/L5 and L5/L6 intervertebral disks (IVDs) were punctured (0.5 mm outer diameter, 2mm-deep) 5 (LPB-5X), or 10 (LBP-10X) times per disk. Sham-rats underwent similar surgery, but without disk puncture. Baseline noxious pressure hyperalgesia of lumbar axial deep tissues, mechanical allodynia in the hindpaws and gait were assessed prior to surgery and once-weekly until study completion on day 49. The model was also characterized using pharmacologic and histologic methods. Good animal health was maintained for ≥ 49 days post-surgery. For LBP- but not sham-rats, there was temporal development of noxious pressure hyperalgesia in lumbar axial deep tissues at days 14–49 post-surgery. Importantly, there were no between-group differences in von Frey paw withdrawal thresholds or gait parameters until study completion. On day 49, significant histologic changes were observed in the L4/L5 and L5/L6 IVDs for LBP-10X rats, but not sham-rats. In LBP-10X rats, single bolus doses of morphine produced dose-dependent relief of primary and secondary mechanical hyperalgesia in lumbar axial deep tissues at L4/L5 and L1, respectively. In conclusion, our new rat model has considerable potential for providing novel insight on the pathobiology of mechanical LBP and for analgesic efficacy assessment of novel compounds.