Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John van Duynhoven is active.

Publication


Featured researches published by John van Duynhoven.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Metabolic fate of polyphenols in the human superorganism

John van Duynhoven; Elaine E. Vaughan; Doris M. Jacobs; Robèr A. Kemperman; Ewoud J. J. van Velzen; Gabriele Gross; Laure C. Roger; Sam Possemiers; Age K. Smilde; Joël Doré; Johan A. Westerhuis; Tom Van de Wiele

Dietary polyphenols are components of many foods such as tea, fruit, and vegetables and are associated with several beneficial health effects although, so far, largely based on epidemiological studies. The intact forms of complex dietary polyphenols have limited bioavailability, with low circulating levels in plasma. A major part of the polyphenols persists in the colon, where the resident microbiota produce metabolites that can undergo further metabolism upon entering systemic circulation. Unraveling the complex metabolic fate of polyphenols in this human superorganism requires joint deployment of in vitro and humanized mouse models and human intervention trials. Within these systems, the variation in diversity and functionality of the colonic microbiota can increasingly be captured by rapidly developing microbiomics and metabolomics technologies. Furthermore, metabolomics is coming to grips with the large biological variation superimposed on relatively subtle effects of dietary interventions. In particular when metabolomics is deployed in conjunction with a longitudinal study design, quantitative nutrikinetic signatures can be obtained. These signatures can be used to define nutritional phenotypes with different kinetic characteristics for the bioconversion capacity for polyphenols. Bottom-up as well as top-down approaches need to be pursued to link gut microbial diversity to functionality in nutritional phenotypes and, ultimately, to bioactivity of polyphenols. This approach will pave the way for personalization of nutrition based on gut microbial functionality of individuals or populations.


Molecular Nutrition & Food Research | 2009

The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics.

Ferdinand A. van Dorsten; Christian H. Grün; Ewoud J. J. van Velzen; Doris M. Jacobs; Richard Draijer; John van Duynhoven

The metabolic impact of polyphenol-rich red wine and grape juice consumption in humans was studied using a metabolomics approach. Fifty-eight men and women participated in a placebo-controlled, double-crossover study in which they consumed during a period of 4 wk, either a polyphenol-rich 2:1 dry mix of red wine and red grape juice extracts (MIX) or only a grape juice extract (GJX). Twenty-four-hour urine samples were collected after each intervention. (1)H NMR spectroscopy was applied for global metabolite profiling, while GC-MS was used for focused profiling of urinary phenolic acids. Urine metabolic profiles after intake of both polyphenol-rich extracts were significantly differentiated from placebo using multilevel partial least squares discriminant analysis. A significant 35% increase in hippuric acid excretion (p<0.001) in urine was measured after the MIX consumption as) or only a red grape juice dry extract (GJX). 24-h urine samples were collected after each intervention. 1H-NMR spectroscopy was applied for global metabolite profiling, while gas chromatography-mass spectrometry (GC-MS) was used for focused profiling of urinary phenolic acids. Urine metabolic profiles after intake of both polyphenol-rich extracts were significantly differentiated from placebo using multilevel partial least squares discriminant analysis (ML-PLS-DA). A significant 35% increase in hippuric acid excretion (p<0.001) in urine was measured after the MIX consumption compared with placebo, whereas no change was found after GJX consumption. GC-MS-based metabolomics of urine allowed identification of 18 different phenolic acids, which were significantly elevated following intake of either extract. Syringic acid, 3- and 4-hydroxyhippuric acid and 4-hydroxymandelic acid were the strongest urinary markers for both extracts. MIX and GJX consumption had a slightly different effect on the excreted phenolic acid profile and on endogenous metabolite excretion, possibly reflecting their different polyphenol composition.


Journal of Agricultural and Food Chemistry | 2010

In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability

Gabriele Gross; Doris M. Jacobs; Sam Possemiers; John van Duynhoven; Elaine E. Vaughan; Tom Van de Wiele

Dietary polyphenols in tea and wine have been associated with beneficial health effects. After ingestion, most polyphenols are metabolized by the colonic microbiota. The current study aimed at exploring the interindividual variation of gut microbial polyphenol bioconversion from 10 healthy human subjects. In vitro fecal batch fermentations simulating conditions in the distal colon were performed using polyphenols from black tea and a mixture of red wine and grape juice. Microbial bioconversion was monitored by NMR- and GC-MS-based profiling of diverse metabolites and phenolics. The complex polyphenol mixtures were degraded to a limited number of key metabolites. Each subject displayed a specific metabolite profile differing in composition and time courses as well as levels of these metabolites. Moreover, clear differences depending on the polyphenol sources were observed. In conclusion, varying metabolite pathways among individuals result in different metabolome profiles and therefore related health effects are hypothesized to differ between subjects.


Journal of Proteome Research | 2009

Phenotyping Tea Consumers by Nutrikinetic Analysis of Polyphenolic End-Metabolites

Ewoud J. J. van Velzen; Johan A. Westerhuis; John van Duynhoven; Ferdi A. van Dorsten; Christian H. Grün; Doris M. Jacobs; Guus S. M. J. E. Duchateau; Daniel J. Vis; Age K. Smilde

An integration of metabolomics and pharmacokinetics (or nutrikinetics) is introduced as a concept to describe a human study population with different metabolic phenotypes following a nutritional intervention. The approach facilitates an unbiased analysis of the time-response of body fluid metabolites from crossover designed intervention trials without prior knowledge of the underlying metabolic pathways. The method is explained for the case of a human intervention study in which the nutrikinetic analysis of polyphenol-rich black tea consumption was performed in urine over a period of 48 h. First, multilevel PLS-DA analysis was applied to the urinary 1H NMR profiles to select the most differentiating biomarkers between the verum and placebo samples. Then, a one-compartment nutrikinetic model with first-order excretion, a lag time, and a baseline function was fitted to the time courses of these selected biomarkers. The nutrikinetic model used here fully exploits the crossover structure in the data by fitting the data from both the treatment period and the placebo period simultaneously. To demonstrate the procedure, a selected set of urinary biomarkers was used in the model fitting. These metabolites include hippuric acid, 4-hydroxyhippuric acid and 1,3-dihydroxyphenyl-2-O-sulfate and derived from microbial fermentation of polyphenols in the gut. Variations in urinary excretion between- and within the subjects were observed, and used to provide a phenotypic description of the test population.


Journal of Chromatography B | 2008

GC-MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies

Christian H. Grün; Ferdi A. van Dorsten; Doris M. Jacobs; Marie Le Belleguic; Ewoud J. J. van Velzen; Max O. Bingham; Hans-Gerd Janssen; John van Duynhoven

Flavonoids, a subclass of polyphenols, are major constituents of many plant-based foods and beverages, including tea, wine and chocolate. Epidemiological studies have shown that a flavonoid-rich diet is associated with reduced risk of cardiovascular diseases. The majority of the flavonoids survive intact until they reach the colon where they are then extensively metabolized into smaller fragments. Here, we describe the development of GC-MS-based methods for the profiling of phenolic microbial fermentation products in urine, plasma, and fecal water. Furthermore, the methods are applicable for profiling products obtained from in vitro batch culture fermentation models. The methods incorporate enzymatic deconjugation, liquid-liquid extraction, derivatization, and subsequent analysis by GC-MS. At the level of individual compounds, the methods gave recoveries better than 80% with inter-day precision being better than 20%, depending on the matrix. Limits of detection were below 0.1 microg/ml for most phenolic acids. The newly developed methods were successfully applied to samples from human and in-vitro intervention trials, studying the metabolic impact of flavonoid intake. In conclusion, the methods presented are robust and generally applicable to diverse biological fluids. Its profiling character is useful to investigate on a large scale the gut microbiome-mediated bioavailability of flavonoids.


Cereal Chemistry | 2003

Long-Term Storage Effect in Frozen Dough by Spectroscopy and Microscopy

Eddy Esselink; Henrie van Aalst; Manuelle Maliepaard; John van Duynhoven

ABSTRACT Storage of dough at low temperatures (-20°C) has a considerable effect on the final quality of baked bread; this is most obviously reflected in lowered specific volumes. In this study, a suite of structural characterization techniques is applied to examine the underlying mechanism of storage damage at the molecular, microstructural, and macroscopic level. By using infrared spectroscopy, the dehydration of the gluten component could be established at the molecular level, and its kinetics could be monitored in time. Time-domain nuclear magnetic resonance (NMR) showed increased water mobility, which could be attributed to a release of water from the gluten matrix. At the microstructural level, the growth of ice crystals could be monitored by means of cryogenic scanning electron microscopy (cryo-SEM). These ice crystals are preferably formed in gas cells with kinetics that are slower than those during infrared spectroscopy but similar to those in time-domain NMR. At the macroscopic level, ice crystal...


Journal of Magnetic Resonance | 2013

MRI of plants and foods.

Henk Van As; John van Duynhoven

The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanitys most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.


The American Journal of Clinical Nutrition | 2013

Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health

John van Duynhoven; Elaine E. Vaughan; Ferdi A. van Dorsten; Victoria Gomez-Roldan; Ric C. H. de Vos; Jacques Vervoort; Justin Jj van der Hooft; Laure C. Roger; Richard Draijer; Doris M. Jacobs

Epidemiologic studies have convincingly associated consumption of black tea with reduced cardiovascular risk. Research on the bioactive molecules has traditionally been focused on polyphenols, such as catechins. Black tea polyphenols (BTPs), however, mainly consist of high-molecular-weight species that predominantly persist in the colon. There, they can undergo a wide range of bioconversions by the resident colonic microbiota but can in turn also modulate gut microbial diversity. The impact of BTPs on colon microbial composition can now be assessed by microbiomics technologies. Novel metabolomics platforms coupled to de novo identification are currently available to cover the large diversity of BTP bioconversions by the gut microbiota. Nutrikinetic modeling has been proven to be critical for defining nutritional phenotypes related to gut microbial bioconversion capacity. The bioactivity of circulating metabolites has been studied only to a certain extent. Bioassays dedicated to specific aspects of gut and cardiovascular health have been used, although often at physiologically irrelevant concentrations and with limited coverage of relevant metabolite classes and their conjugated forms. Evidence for cardiovascular benefits of BTPs points toward antiinflammatory and blood pressure-lowering properties and improvement in platelet and endothelial function for specific microbial bioconversion products. Clearly, more work is needed to fill in existing knowledge gaps and to assess the in vitro and in vivo bioactivity of known and newly identified BTP metabolites. It is also of interest to assess how phenotypic variation in gut microbial BTP bioconversion capacity relates to gut and cardiovascular health predisposition.


Cereal Chemistry | 2003

Factors Associated with Dough Stickiness as Sensed by Attenuated Total Reflectance Infrared Spectroscopy

Ewoud J. J. van Velzen; John van Duynhoven; Paul Pudney; Peter L. Weegels; John H. van der Maas

ABSTRACT Attenuated total reflectance (ATR) and Fourier transform infrared (FTIR) spectroscopy have been applied in the characterization of sticky dough surfaces. The characterization provides insight in the chemical distribution of gluten protein, starch, water, and fat during dough kneading. ATR is especially useful for selective sampling of dough surfaces because the depth of penetration of radiation is quite shallow. For dough, it is calculated to be in the order of 0.5–4 μm in the mid-infrared, ideal for measurements of stickiness effects, where only the dough surface is of interest. To investigate the cohesive and adhesive properties of the individual dough constituents, dough was peeled from the ATR plate to study the material that adhered to it. The infrared spectra obtained indicate that fat and gluten protein appear to be located at the outer sticky dough surfaces, rather than water and starch. In comparison with gluten, the fatty component showed relatively strong adhesive forces to the ATR pla...


Cereal Chemistry | 2003

Quantitative Assessment of Gas Cell Development During the Proofing of Dough by Magnetic Resonance Imaging and Image Analysis

John van Duynhoven; Geert M. P. van Kempen; Robert van Sluis; Bernd Rieger; Peter L. Weegels; Lucas J. van Vliet; K. Nicolay

Cereal Chem. 80(4):390–395 The structure of bread crumb is an important factor in consumer acceptance of bakery products. The noninvasive monitoring of the gas cell formation during the proofing of dough can aid in understanding the mechanisms governing the crumb appearance in the baked product. The development of gas cells during the proofing of dough was monitored in a noninvasive manner using magnetic resonance imaging (MRI) at 4.7-T. The acquired MRI time series were analyzed quantitatively using image analysis (IA) techniques. The effects of both kneading temperature and mechanical damage by molding were studied. When additional rheological stress was introduced during molding, a more heterogeneous (coarse) gas cell size distribution was observed, and the dough had a smaller specific volume (as measured by MRI). These characteristics were preserved in the bread crumb structure after baking. The fastdeformation during molding also resulted in an isotropic growth of the dough during proofing, whereas slow-deformation during molding resulted in anisotropic growth. This can be related to a better conservation of stress in the dough under a moderate molding operation. A higher temperature during kneading also resulted in a coarser distribution of the gas cells and a smaller MRI specific dough volume. No effect of kneading temperature on the growth anisotropy could be detected, however. This indicates that temperature has a smaller effect on the conservation of stress in the dough than molding. The current work illustrates the capability of MRI/IA for understanding and predicting the influence of food processing parameters on consumer-relevant features in a food product (bread).

Collaboration


Dive into the John van Duynhoven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willem Verboom

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henk Van As

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daan W. de Kort

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Elaine E. Vaughan

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge