John W. Nance
Medical University of South Carolina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John W. Nance.
Jacc-cardiovascular Imaging | 2011
Doo Kyoung Kang; Christian Thilo; U. Joseph Schoepf; J. Michael Barraza; John W. Nance; Gorka Bastarrika; Joseph A. Abro; James G. Ravenel; Philip Costello; Samuel Z. Goldhaber
OBJECTIVES The purpose of this study was to compare the prognostic role of various computed tomography (CT) signs of right ventricular (RV) dysfunction, including 3-dimensional ventricular volume measurements, to predict adverse outcomes in patients with acute pulmonary embolism (PE). BACKGROUND Three-dimensional ventricular volume measurements based on chest CT have become feasible for routine clinical application; however, their prognostic role in patients with acute PE has not been assessed. METHODS We evaluated 260 patients with acute PE for the following CT signs of RV dysfunction obtained on routine chest CT: abnormal position of the interventricular septum, inferior vena cava contrast reflux, right ventricle diameter (RVD) to left ventricle diameter (LVD) ratio on axial sections and 4-chamber (4-CH) views, and 3-dimensional right ventricle volume (RVV) to left ventricle volume (LVV) ratio. Comorbidities and fatal and nonfatal adverse outcomes according to the MAPPET-3 (Management Strategies and Prognosis in Pulmonary Embolism Trial-3) criteria within 30 days were recorded. RESULTS Fifty-seven patients (21.9%) had adverse outcomes, including 20 patients (7.7%) who died within 30 days. An RVD(axial)/LVD(axial) ratio >1.0 was not predictive for adverse outcomes. On multivariate analysis (adjusting for comorbidities), abnormal position of the interventricular septum (hazard ratio [HR]: 2.07; p = 0.007), inferior vena cava contrast reflux (HR: 2.57; p = 0.001), RVD(4-CH)/LVD(4-CH) ratio >1.0 (HR: 2.51; p = 0.009), and RVV/LVV ratio >1.2 (HR: 4.04; p < 0.001) were predictive of adverse outcomes, whereas RVD(4-CH)/LVD(4-CH) ratio >1.0 (HR: 3.68; p = 0.039) and RVV/LVV ratio >1.2 (HR: 6.49; p = 0.005) were predictive of 30-day death. CONCLUSIONS Three-dimensional ventricular volume measurement on chest CT is a predictor of early death in patients with acute PE, independent of clinical risk factors and comorbidities. Abnormal position of the interventricular septum, inferior vena cava contrast reflux, and RVD(4-CH)/LVD(4-CH) ratio are predictive of adverse outcomes, whereas RVD(axial)/LVD(axial) ratio >1.0 is not.
Radiology | 2011
Matthias Renker; John W. Nance; U. Joseph Schoepf; Terrence X. O’Brien; Peter L. Zwerner; Mathias Meyer; J. Matthias Kerl; Ralf W. Bauer; Christian Fink; Thomas J. Vogl; Thomas Henzler
PURPOSE To prospectively compare traditional filtered back projection (FBP) and iterative image reconstruction for the evaluation of heavily calcified arteries with coronary computed tomography (CT) angiography. MATERIALS AND METHODS The study had institutional review board approval and was HIPAA compliant. Written informed consent was obtained from all patients. Fifty-five consecutive patients (35 men, 20 women; mean age, 58 years ± 12 [standard deviation]) with Agatston scores of at least 400 underwent coronary CT angiography and cardiac catheterization. Image data were reconstructed with both FBP and iterative reconstruction techniques with corresponding cardiac algorithms. Image noise and subjective image quality were compared. To objectively assess the effect of FBP and iterative reconstruction on blooming artifacts, volumes of circumscribed calcifications were measured with dedicated volume analysis software. FBP and iterative reconstruction series were independently evaluated for coronary artery stenosis greater than 50%, and their diagnostic accuracy was compared, with cardiac catheterization as the reference standard. Statistical analyses included paired t tests, Kruskal-Wallis analysis of variance, and a modified McNemar test. RESULTS Image noise measured significantly lower (P = .011-.035) with iterative reconstruction instead of FBP. Image quality was rated significantly higher (P = .031 and .042) with iterative reconstruction series than with FBP. Calcification volumes measured significantly lower (P = .019 and .026) with iterative reconstruction (44.3 mm(3) ± 64.7 and 46.2 mm(3) ± 68.8) than with FBP (54.5 mm(3) ± 69.5 and 56.3 mm(3) ± 72.5). Iterative reconstruction significantly improved some measures of per-segment diagnostic accuracy of coronary CT angiography for the detection of significant stenosis compared with FBP (accuracy: 95.9% vs 91.8%, P = .0001; specificity: 95.8% vs 91.2%, P = .0001; positive predictive value: 76.9% vs 61.1%, P = .0001). CONCLUSION Iterative reconstruction reduces image noise and blooming artifacts from calcifications, leading to improved diagnostic accuracy of coronary CT angiography in patients with heavily calcified coronary arteries.
Radiology | 2015
Lucas L. Geyer; U. Joseph Schoepf; Felix G. Meinel; John W. Nance; Gorka Bastarrika; Jonathon Leipsic; Narinder Paul; Marco Rengo; Andrea Laghi; Carlo N. De Cecco
Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging.
European Journal of Radiology | 2014
Paul Apfaltrer; Sonja Sudarski; David Schneider; John W. Nance; Holger Haubenreisser; Christian Fink; Stefan O. Schoenberg; Thomas Henzler
PURPOSE High vessel attenuation and high contrast-to-noise ratio (CNR) are prerequisites for high diagnostic confidence in CT pulmonary angiography (CTPA). This study evaluated the impact of calculated monoenergetic dual-energy (DE) CTPA datasets on vessel attenuation and CNR. MATERIALS AND METHODS 50 Patients (24 men, mean age 68 ± 14 years) who underwent DE-CTPA were retrospectively included in this study. The 80 and 140-kV DE polyenergetic image data were used to calculate virtual monoenergetic image datasets in 10 kiloelectron volt (keV) increments from 40 to 120 keV. Vessel and soft tissue attenuation and image noise were measured in various regions of interest and the CNR was subsequently calculated. Differences in vessel attenuation and CNR were compared between the different monoenergetic datasets. The best monoenergetic dataset was then compared to the standard 120-kV polyenergetic dataset. RESULTS Vessel attenuation and CNR of 70-keV CTPA datasets were superior to all other monoenergetic image datasets (all p<0.05). 70-keV monoenergetic datasets provided a statistically significant 12% increase in mean vessel attenuation compared to standard 120-kV polyenergetic datasets (384 ± 117 HU vs. 342 ± 106 HU, respectively; p<0.0001) and a statistically significant 18% increase in mean CNR (29 ± 13 vs. 24 ± 11 respectively; p<0.0001). CONCLUSION Virtual 70-keV monoenergetic CTPA image datasets significantly increase vessel attenuation and CNR of DE-CTPA studies, suggesting that clinical application of low-keV monoenergetic reconstructions may allow a decrease in the amount of iodinated contrast required for adequate image quality in DE-CTPA examinations.
European Journal of Radiology | 2013
Sonja Sudarski; Paul Apfaltrer; John W. Nance; David Schneider; Mathias Meyer; Stefan O. Schoenberg; Christian Fink; Thomas Henzler
OBJECTIVES To compare objective image quality indices in dual-energy CT angiography (DE-CTA) studies of the abdomen and lower extremity using conventional polyenergetic images (PEIs) and virtual monoenergetic images (MEIs) at different kiloelectron volt (keV) levels. METHODS We retrospectively evaluated 68 dual-source DE-CTA studies. 50 patients (42 men, 71 ± 10 years) underwent abdominal DE-CTA. 18 patients (13 men, 67 ± 10 years) underwent lower extremity DE-CTA. MEIs from 40 to 120 keV were reconstructed. Signal intensity, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed in infrarenal aorta, superior mesenteric, external iliac, femoral, popliteal, and lower leg arteries. Comparisons between MEIs and PEIs were performed with Dunnetts test. RESULTS 222 arteries were evaluated. In abdominal arteries 70 keV MEIs showed statistically equal signal intensity, noise and CNR levels (+13%; +31%, -14% on average; all p>0.05) compared to PEIs; SNR was equal or slightly impaired (-7% on average; p<0.001-1.00). In lower extremity arteries 60 keV MEIs resulted in significantly higher signal intensity and CNR (+54%; +54% on average; all p<0.05) compared to PEIs at equal noise levels (+18% on average; all p>0.05) and equal or higher SNR (+49% on average; p<0.01-0.35). CONCLUSIONS Low-keV MEIs lead to equal or higher signal intensity and CNR compared to PEIs. In lower extremity DE-CTA, additional reconstruction of low-keV MEIs at 60 keV might increase diagnostic confidence.
European Respiratory Journal | 2012
Thomas Henzler; Susanne Roeger; Mathias Meyer; Schoepf Uj; John W. Nance; Dariush Haghi; W.E. Kaminski; Michael Neumaier; Stefan O. Schoenberg; Christian Fink
The aim of this study was to prospectively evaluate the accuracy of quantitative cardiac computed tomography (CT) parameters and two cardiac biomarkers (N-terminal-pro-brain natriuretic peptide (NT-pro-BNP) and troponin I), alone and in combination, for predicting right ventricular dysfunction (RVD) in patients with acute pulmonary embolism. 557 consecutive patients with suspected pulmonary embolism underwent pulmonary CT angiography. Patients with pulmonary embolism also underwent echocardiography and NT-pro-BNP/troponin I serum level measurements. Three different CT measurements were obtained (right ventricular (RV)/left ventricular (LV)axial, RV/LV4-CH and RV/LVvolume). CT measurements and NT-pro-BNP/troponin I serum levels were correlated with RVD at echocardiography. 77 patients with RVD showed significantly higher RV/LV ratios and NT-pro-BNP/troponin I levels compared to those without RVD (RV/LVaxial 1.68±0.84 versus 1.00±0.21; RV/LV4-CH 1.52±0.45 versus 1.01±0.21; RV/LVvolume 1.97±0.53 versus 1.07±0.52; serum NT-pro-BNP 6,372±2,319 versus 1,032±1,559 ng·L−1; troponin I 0.18±0.41 versus 0.06±0.18 g·L−1). The area under the curve for the detection of RVD of RV/LVaxial, RV/LV4-CH, RV/LVvolume, NT-pro-BNP and troponin I were 0.84, 0.87, 0.93, 0.83 and 0.70 respectively. The combination of biomarkers and RV/LVvolume increased the AUC to 0.95 (RV/LVvolume with NT-pro-BNP) and 0.93 (RV/LVvolume with troponin I). RV/LVvolume is the most accurate CT parameter for identifying patients with RVD. A combination of RV/LVvolume with NT-pro-BNP or troponin I measurements improves the diagnostic accuracy of either test alone.
Radiology | 2014
Felix G. Meinel; Carlo N. De Cecco; U. Joseph Schoepf; John W. Nance; Justin R. Silverman; Brian A. Flowers; Thomas Henzler
PURPOSE To compare the relative contributions of rest, stress, and delayed acquisitions with the accuracy of dual-energy (DE) computed tomography (CT) for the assessment of myocardial blood supply. MATERIALS AND METHODS With institutional review board approval and HIPAA compliance, 55 consecutive patients (10 women, 45 men; mean age, 62 years ± 10) clinically referred for cardiac single photon emission computed tomography (SPECT) who were known to have or were suspected of having coronary artery disease were prospectively enrolled. DE CT studies were acquired during adenosine stress, at rest, and after 6-minute delay. The DE CT iodine distribution maps were visually assessed for perfusion deficits or late iodine enhancement. Per-segment agreement between modalities was investigated with κ statistics. Test characteristics for the detection of perfusion deficits were calculated for combinations of rest, stress, and delayed DE CT acquisition, with SPECT as reference standard. RESULTS At SPECT, 714 segments were considered normal, 192 showed fixed perfusion defects, and 29 showed reversible perfusion deficits. Sensitivity of rest-only DE CT was 92%, and specificity was 98%. Stress-only, rest-stress, stress and delayed, and the combination of all three had a sensitivity of 99% and a specificity of 97%. Of 29 segments with reversible perfusion deficits at SPECT, 13 (45%) were misclassified by using rest-stress DE CT as fixed perfusion deficits. With stress DE CT plus delayed acquisition, 13 of 192 (7%) segments with fixed perfusion deficits at SPECT were misclassified as reversible. CONCLUSION Rest-stress acquisition should be the protocol of choice for assessment of the myocardial blood supply in DE CT. The accuracy of DE CT is not increased by the addition of a delayed DE CT acquisition, which may therefore be omitted to reduce radiation exposure. With rest-stress DE CT, almost one-half of defects that are reversible at SPECT were classified as fixed; radiologists and clinicians need to be aware of this incongruence when they interpret DE CT myocardial perfusion studies.
European Journal of Radiology | 2012
Richard A. P. Takx; Antonio Moscariello; U. Joseph Schoepf; J. Michael Barraza; John W. Nance; Gorka Bastarrika; Marco Das; Mathias Meyer; Joachim E. Wildberger; Stefan O. Schoenberg; Christian Fink; Thomas Henzler
OBJECTIVE To prospectively evaluate the accuracy of left and right ventricular function and myocardial mass measurements based on a dual-step, low radiation dose protocol with prospectively ECG-triggered 2nd generation dual-source CT (DSCT), using cardiac MRI (cMRI) as the reference standard. MATERIALS AND METHODS Twenty patients underwent 1.5T cMRI and prospectively ECG-triggered dual-step pulsing cardiac DSCT. This image acquisition mode performs low-radiation (20% tube current) imaging over the majority of the cardiac cycle and applies full radiation only during a single adjustable phase. Full-radiation-phase images were used to assess cardiac morphology, while low-radiation-phase images were used to measure left and right ventricular function and mass. Quantitative CT measurements based on contiguous multiphase short-axis reconstructions from the axial CT data were compared with short-axis SSFP cardiac cine MRI. Contours were manually traced around the ventricular borders for calculation of left and right ventricular end-diastolic volume, end-systolic volume, stroke volume, ejection fraction and myocardial mass for both modalities. Statistical methods included independent t-tests, the Mann-Whitney U test, Pearson correlation statistics, and Bland-Altman analysis. RESULTS All CT measurements of left and right ventricular function and mass correlated well with those from cMRI: for left/right end-diastolic volume r=0.885/0.801, left/right end-systolic volume r=0.947/0.879, left/right stroke volume r=0.620/0.697, left/right ejection fraction r=0.869/0.751, and left/right myocardial mass r=0.959/0.702. Mean radiation dose was 6.2±1.8mSv. CONCLUSIONS Prospectively ECG-triggered, dual-step pulsing cardiac DSCT accurately quantifies left and right ventricular function and myocardial mass in comparison with cMRI with substantially lower radiation exposure than reported for traditional retrospective ECG-gating.
Seminars in Ultrasound Ct and Mri | 2010
Doo Kyoung Kang; U. Joseph Schoepf; Gorka Bastarrika; John W. Nance; Joseph A. Abro; Balazs Ruzsics
The introduction of coronary CT angiography (cCTA) has reinvigorated the debate whether management of patients with suspected coronary artery disease (CAD) should be primarily based on physiological, functional versus anatomical testing. Anatomical testing (i.e., cCTA or invasive catheterization) enables direct visualization and grading of coronary artery stenoses but has shortcomings for gauging the hemodynamic significance of lesions for myocardial perfusion. Rest/stress myocardial perfusion imaging (MPI) has been extensively validated for assessing the clinical significance of CAD by demonstrating fixed or reversible perfusion defects but has only limited anatomical information. There is growing evidence that contrast medium enhanced dual-energy cCTA (DECT) has potential for the comprehensive analysis of coronary artery morphology as well as changes in myocardial perfusion. DECT exploits the fact that tissues in the human body and iodine-based contrast media have unique absorption characteristics when penetrated with different X-ray energy levels, which enables mapping the iodine (and thus blood) distribution within the myocardium. The purpose of this communication is to describe the practical application of this technology for the comprehensive diagnosis of ischemic heart disease. We examine recent scientific findings in the context of current pivotal transitions in cardiovascular disease management and demonstrate the potential of cardiac DECT for the integrative assessment of patients with known or suspected CAD within a single CT-based protocol.
European Journal of Radiology | 2012
Mathias Meyer; John W. Nance; U. Joseph Schoepf; Antonio Moscariello; Markus Weininger; Garrett W. Rowe; Balazs Ruzsics; Doo Kyoung Kang; Salvatore A. Chiaramida; Stefan O. Schoenberg; Christian Fink; Thomas Henzler
PURPOSE We compared cost-effectiveness and potential lifetime benefits of using dual-energy computed tomography (DECT) for myocardial perfusion assessment instead of single photon emission computed tomography (SPECT) for the workup of coronary artery disease (CAD). MATERIALS AND METHODS A decision and simulation model was developed to estimate cost and health effects of using DECT myocardial perfusion imaging instead of SPECT for identifying patients in need of invasive imaging and possible revascularization. The model was based on the performance indices of stress/rest DECT compared with stress/rest SPECT for detecting myocardial perfusion deficits in 50 patients (mean age 61±10 years) with CAD. Stress/rest perfusion and delayed enhancement cardiac MRI served as reference standard. For DECT a reimbursement of US