Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John W. Sedat is active.

Publication


Featured researches published by John W. Sedat.


Nature | 2012

Spatial partitioning of the regulatory landscape of the X-inactivation centre

Elphège P. Nora; Bryan R. Lajoie; Edda G. Schulz; Luca Giorgetti; Ikuhiro Okamoto; Nicolas Servant; Tristan Piolot; Nynke L. van Berkum; Johannes Meisig; John W. Sedat; Joost Gribnau; Emmanuel Barillot; Nils Blüthgen; Job Dekker; Edith Heard

In eukaryotes transcriptional regulation often involves multiple long-range elements and is influenced by the genomic environment. A prime example of this concerns the mouse X-inactivation centre (Xic), which orchestrates the initiation of X-chromosome inactivation (XCI) by controlling the expression of the non-protein-coding Xist transcript. The extent of Xic sequences required for the proper regulation of Xist remains unknown. Here we use chromosome conformation capture carbon-copy (5C) and super-resolution microscopy to analyse the spatial organization of a 4.5-megabases (Mb) region including Xist. We discover a series of discrete 200-kilobase to 1 Mb topologically associating domains (TADs), present both before and after cell differentiation and on the active and inactive X. TADs align with, but do not rely on, several domain-wide features of the epigenome, such as H3K27me3 or H3K9me2 blocks and lamina-associated domains. TADs also align with coordinately regulated gene clusters. Disruption of a TAD boundary causes ectopic chromosomal contacts and long-range transcriptional misregulation. The Xist/Tsix sense/antisense unit illustrates how TADs enable the spatial segregation of oppositely regulated chromosomal neighbourhoods, with the respective promoters of Xist and Tsix lying in adjacent TADs, each containing their known positive regulators. We identify a novel distal regulatory region of Tsix within its TAD, which produces a long intervening RNA, Linx. In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, our study sets the stage for the full genetic dissection of the X-inactivation centre.


Science | 2008

Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy

Lothar Schermelleh; Peter M. Carlton; Sebastian Haase; Lin Shao; Lukman Winoto; Peter Kner; Brian Burke; M. Cristina Cardoso; David A. Agard; Mats G. L. Gustafsson; Heinrich Leonhardt; John W. Sedat

Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light.


Biophysical Journal | 2008

Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination

Mats G. L. Gustafsson; Lin Shao; Peter M. Carlton; C. J. Rachel Wang; Inna N. Golubovskaya; W. Zacheus Cande; David A. Agard; John W. Sedat

Structured illumination microscopy is a method that can increase the spatial resolution of wide-field fluorescence microscopy beyond its classical limit by using spatially structured illumination light. Here we describe how this method can be applied in three dimensions to double the axial as well as the lateral resolution, with true optical sectioning. A grating is used to generate three mutually coherent light beams, which interfere in the specimen to form an illumination pattern that varies both laterally and axially. The spatially structured excitation intensity causes normally unreachable high-resolution information to become encoded into the observed images through spatial frequency mixing. This new information is computationally extracted and used to generate a three-dimensional reconstruction with twice as high resolution, in all three dimensions, as is possible in a conventional wide-field microscope. The method has been demonstrated on both test objects and biological specimens, and has produced the first light microscopy images of the synaptonemal complex in which the lateral elements are clearly resolved.


Current Biology | 1997

Interphase chromosomes undergo constrained diffusional motion in living cells

Wallace F. Marshall; Aaron F. Straight; John F. Marko; Jason R. Swedlow; Abby F. Dernburg; Andrew S. Belmont; Andrew W. Murray; David A. Agard; John W. Sedat

BACKGROUND Structural studies of fixed cells have revealed that interphase chromosomes are highly organized into specific arrangements in the nucleus, and have led to a picture of the nucleus as a static structure with immobile chromosomes held in fixed positions, an impression apparently confirmed by recent photobleaching studies. Functional studies of chromosome behavior, however, suggest that many essential processes, such as recombination, require interphase chromosomes to move around within the nucleus. RESULTS To reconcile these contradictory views, we exploited methods for tagging specific chromosome sites in living cells of Saccharomyces cerevisiae with green fluorescent protein and in Drosophila melanogaster with fluorescently labeled topoisomerase ll. Combining these techniques with submicrometer single-particle tracking, we directly measured the motion of interphase chromatin, at high resolution and in three dimensions. We found that chromatin does indeed undergo significant diffusive motion within the nucleus, but this motion is constrained such that a given chromatin segment is free to move within only a limited subregion of the nucleus. Chromatin diffusion was found to be insensitive to metabolic inhibitors, suggesting that it results from classical Brownian motion rather than from active motility. Nocodazole greatly reduced chromatin confinement, suggesting a role for the cytoskeleton in the maintenance of nuclear architecture. CONCLUSIONS We conclude that chromatin is free to undergo substantial Brownian motion, but that a given chromatin segment is confined to a subregion of the nucleus. This constrained diffusion is consistent with a highly defined nuclear architecture, but also allows enough motion for processes requiring chromosome motility to take place. These results lead to a model for the regulation of chromosome interactions by nuclear architecture.


Immunity | 2001

Early Transcription and Silencing of Cytokine Genes Underlie Polarization of T Helper Cell Subsets

Jane L. Grogan; Markus Mohrs; Brian Harmon; Dee A. Lacy; John W. Sedat; Richard M. Locksley

Naive CD4+ T cells activated through TCR/CD28 under Th1 or Th2 conditions expressed canonical cytokine patterns irrespective of cell division. Only cells that had divided fewer than four times were capable of reexpressing alternative cytokines when restimulated under opposing conditions. Although T cells transcribed both IFN-gamma and IL-4 within hours in a Stat4-/Stat6-independent manner, neither T-bet nor GATA-3 was induced optimally without Stat signals, and polarized cytokine expression was not sustained. Cytokine genes were positioned apart from heterochromatin in resting T cell nuclei, consistent with rapid expression. After polarization, the majority of silenced cytokine alleles were repositioned to heterochromatin. Naive T cells transit through sequential stages of cytokine activation, commitment, silencing, and physical stabilization during polarization into differentiated effector subsets.


Cell | 1996

Perturbation of Nuclear Architecture by Long-Distance Chromosome Interactions

Abby F. Dernburg; Karl W. Broman; Jennifer C. Fung; Wallace F. Marshall; Jennifer Philips; David A. Agard; John W. Sedat

SUMMARY Position-effect variegation (PEV) describes the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. Using FISH, we have tested whether variegated expression of the eye-color gene brown in Drosophila is influenced by its nuclear localization. In embryonic nuclei, a heterochromatic insertion at the brown locus is always spatially isolated from other heterochromatin. However, during larval development this insertion physically associates with other heterochromatic regions on the same chromosome in a stochastic manner. These observations indicate that the brown gene is silenced by specific contact with centromeric heterochromatin. Moreover, they provide direct evidence for long-range chromosome interactions and their impact on three-dimensional nuclear architecture, while providing a cohesive explanation for the phenomenon of PEV.


Cell | 1996

Direct evidence of a role for heterochromatin in meiotic chromosome segregation.

Abby F. Dernburg; John W. Sedat; R. Scott Hawley

We have investigated the mechanism that enables achiasmate chromosomes to segregate from each other at meiosis I in D. melanogaster oocytes. Using novel cytological methods, we asked whether nonexchange chromosomes are paired prior to disjunction. Our results show that the heterochromatin of homologous chromosomes remains associated throughout prophase until metaphase I regardless of whether they undergo exchange, suggesting that homologous recognition can lead to segregation even in the absence of chiasmata. However, partner chromosomes lacking homology do not pair prior to disjunction. Furthermore, euchromatic synapsis is not maintained throughout prophase. These observations provide a physical demonstration that homologous and heterologous achiasmate segregations occur by different mechanisms and establish a role for heterochromatin in maintaining the alignment of chromosomes during meiosis.


Current Biology | 2001

Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus

Julio A. Vázquez; Andrew S. Belmont; John W. Sedat

BACKGROUND Increasing evidence indicates specific changes in the three-dimensional organization of chromosomes in the cell nucleus during the cell cycle and development. These changes may be linked to changes in both the coordinated regulation of gene transcription and the timing of chromosome replication. While there is cytological evidence for short-range diffusive motion of chromosomes during interphase, the mechanisms for large-scale chromosome remodeling inside the nucleus remain unknown. RESULTS Chromosome motion was tracked in Drosophila spermatocyte nuclei by 3D fluorescence microscopy. The Lac repressor/lac operator system was used to label specific chromosomal sites in live tissues, allowing extended observation of chromatin motion in different cell cycle stages. Our results reveal a highly dynamic chromosome organization governed by two types of motion: a fast, short-range component over a 1-2 s time scale and a slower component related to long-range chromosome motion within the nucleus. The motion patterns are consistent with a random walk. In early G2, short-range motion occurs within a small, approximately 0.5 microm radius domain, while long-range motion is confined to a much larger, chromosome-sized domain. Progression through G2 as cells approach meiotic prophase is accompanied by a complete arrest of long-range chromosome motion. CONCLUSIONS Our analysis provides direct evidence for cell cycle-regulated changes in interphase chromatin motion. These changes are consistent with changes in local and long-range constraints on chromosome motility. We propose that dynamic interactions between chromosomes and internal nuclear structures modulate the range and rate of interphase chromatin diffusion and thereby regulate large-scale nuclear chromosome organization.


Nature Cell Biology | 1999

Spatial control of actin polymerization during neutrophil chemotaxis

Orion D. Weiner; Guy Servant; Matthew D. Welch; Timothy J. Mitchison; John W. Sedat; Henry R. Bourne

Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.


Developmental Biology | 1983

Localization of antigenic determinants in whole Drosophila embryos

Timothy J. Mitchison; John W. Sedat

Procedures are described for removal of the vitelline membrane from gently fixed Drosophila embryos en masse. The resulting embryos retain excellent structural integrity and are now suitable for a variety of immunocytochemical and biochemical characterizations.

Collaboration


Dive into the John W. Sedat's collaboration.

Top Co-Authors

Avatar

David A. Agard

University of California

View shared research outputs
Top Co-Authors

Avatar

Zvi Kam

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge