Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John W. Shiver is active.

Publication


Featured researches published by John W. Shiver.


The Lancet | 2008

HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case–cohort analysis

M. Juliana McElrath; Stephen C. De Rosa; Zoe Moodie; Sheri A. Dubey; Lisa Kierstead; Holly Janes; Olivier D. Defawe; Donald K. Carter; John Hural; Rama Akondy; Susan Buchbinder; Michael N. Robertson; Devan V. Mehrotra; Steven G. Self; Lawrence Corey; John W. Shiver; Danilo R. Casimiro

BACKGROUND In the Step Study, the MRKAd5 HIV-1 gag/pol/nef vaccine did not reduce plasma viraemia after infection, and HIV-1 incidence was higher in vaccine-treated than in placebo-treated men with pre-existing adenovirus serotype 5 (Ad5) immunity. We assessed vaccine-induced immunity and its potential contributions to infection risk. METHODS To assess immunogenicity, we characterised HIV-specific T cells ex vivo with validated interferon-gamma ELISPOT and intracellular cytokine staining assays, using a case-cohort design. To establish effects of vaccine and pre-existing Ad5 immunity on infection risk, we undertook flow cytometric studies to measure Ad5-specific T cells and circulating activated (Ki-67+/BcL-2(lo)) CD4+ T cells expressing CCR5. FINDINGS We detected interferon-gamma-secreting HIV-specific T cells (range 163/10(6) to 686/10(6) peripheral blood mononuclear cells) ex vivo by ELISPOT in 77% (258/354) of people receiving vaccine; 218 of 354 (62%) recognised two to three HIV proteins. We identified HIV-specific CD4+ T cells by intracellular cytokine staining in 58 of 142 (41%) people. In those with reactive CD4+ T cells, the median percentage of CD4+ T cells expressing interleukin 2 was 88%, and the median co-expression of interferon gamma or tumor necrosis factor alpha (TNFalpha), or both, was 72%. We noted HIV-specific CD8+ T cells (range 0.4-1.0%) in 117 of 160 (73%) participants, expressing predominantly either interferon gamma alone or with TNFalpha. Vaccine-induced HIV-specific immunity, including response rate, magnitude, and cytokine profile, did not differ between vaccinated male cases (before infection) and non-cases. Ad5-specific T cells were lower in cases than in non-cases in several subgroup analyses. The percentage of circulating Ki-67+BcL-2(lo)/CCR5+CD4+ T cells did not differ between cases and non-cases. INTERPRETATION Consistent with previous trials, the MRKAd5 HIV-1 gag/pol/nef vaccine was highly immunogenic for inducing HIV-specific CD8+ T cells. Our findings suggest that future candidate vaccines have to elicit responses that either exceed in magnitude or differ in breadth or function from those recorded in this trial.


Journal of Virology | 2003

Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene

Danilo R. Casimiro; Ling Chen; Tong-Ming Fu; Robert K. Evans; Michael J. Caulfield; Mary-Ellen Davies; Aimin Tang; Minchun Chen; Lingyi Huang; Virginia Harris; Daniel C. Freed; Keith A. Wilson; Sheri A. Dubey; De-Min Zhu; Denise K. Nawrocki; Henryk Mach; Robert Troutman; Lynne Isopi; Donna M. Williams; William Hurni; Zheng Xu; Jeffrey G. Smith; Su Wang; Xu Liu; Liming Guan; Romnie Long; Wendy L. Trigona; Gwendolyn J. Heidecker; Helen C. Perry; Natasha Persaud

ABSTRACT Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defective adenovirus serotype 5 (Ad5) vector, each expressing the same codon-optimized HIV-1 gag gene for immunogenicity in rhesus monkeys. The DNA vaccines were formulated with and without one of two chemical adjuvants (aluminum phosphate and CRL1005). The Ad5-gag vector was the most effective in eliciting anti-Gag CTL. The vaccine produced both CD4+ and CD8+ T-cell responses, with the latter consistently being the dominant component. To determine the effect of existing antiadenovirus immunity on Ad5-gag-induced immune responses, monkeys were exposed to adenovirus subtype 5 that did not encode antigen prior to immunization with Ad5-gag. The resulting anti-Gag T-cell responses were attenuated but not abolished. Regimens that involved priming with different DNA vaccine formulations followed by boosting with the adenovirus vector were also compared. Of the formulations tested, the DNA-CRL1005 vaccine primed T-cell responses most effectively and provided the best overall immune responses after boosting with Ad5-gag. These results are suggestive of an immunization strategy for humans that are centered on use of the adenovirus vector and in which existing adenovirus immunity may be overcome by combined immunization with adjuvanted DNA and adenovirus vector boosting.


Nature Medicine | 1995

Preclinical efficacy of a prototype DNA vaccine: Enhanced protection against antigenic drift in influenza virus

John Donnelly; Arthur Friedman; Douglas Martinez; Donna L. Montgomery; John W. Shiver; Sherri L. Motzel; Jeffrey B. Ulmer; Margaret A. Liu

Vaccination with plasmid DNA expression vectors encoding foreign proteins elicits antibodies and cell-mediated immunity and protects against disease in animal models. We report a comparison of DNA vaccines, using contemporary human strains of virus, and clinically licensed (inactivated virus or subvirion) vaccines in preclinical animal models, to better predict their efficacy in humans. Influenza DNA vaccines elicited antibodies in both non-human primates and ferrets and protected ferrets against challenge with an antigenically distinct epidemic human influenza virus more effectively than the contemporary clinically licensed vaccine. These studies demonstrate that DNA vaccines may be more effective, particularly against different strains of virus, than inactivated virus or subvirion vaccines.


Journal of Virology | 2005

Attenuation of Simian Immunodeficiency Virus SIVmac239 Infection by Prophylactic Immunization with DNA and Recombinant Adenoviral Vaccine Vectors Expressing Gag

Danilo R. Casimiro; Fubao Wang; William A. Schleif; Xiaoping Liang; Zhi Qiang Zhang; Timothy W. Tobery; Mary-Ellen Davies; Adrian B. McDermott; David H. O'Connor; Arthur Fridman; Ansu Bagchi; Lynda Tussey; Andrew J. Bett; Adam C. Finnefrock; Tong-Ming Fu; Aimin Tang; Keith A. Wilson; Minchun Chen; Helen C. Perry; Gwendolyn J. Heidecker; Daniel C. Freed; Anthony Carella; Kara Punt; Kara J. Sykes; Lingyi Huang; Virginia I. Ausensi; Margaret Bachinsky; Usha Sadasivan-Nair; David I. Watkins; Emilio A. Emini

ABSTRACT The prophylactic efficacy of DNA and replication-incompetent adenovirus serotype 5 (Ad5) vaccine vectors expressing simian immunodeficiency virus (SIV) Gag was examined in rhesus macaques using an SIVmac239 challenge. Cohorts of either Mamu-A*01(+) or Mamu-A*01(−) macaques were immunized with a DNA prime-Ad5 boost regimen; for comparison, a third cohort consisting of Mamu-A*01(+) monkeys was immunized using the Ad5 vector alone for both prime and boost. All animals, along with unvaccinated control cohorts of Mamu-A*01(+) and Mamu-A*01(−) macaques, were challenged intrarectally with SIVmac239. Viral loads were measured in both peripheral and lymphoid compartments. Only the DNA prime-Ad5-boosted Mamu-A*01(+) cohort exhibited a notable reduction in peak plasma viral load (sevenfold) as well as in early set-point viral burdens in both plasma and lymphoid tissues (10-fold) relative to those observed in the control monkeys sharing the same Mamu-A*01 allele. The degree of control in each animal correlated with the levels of Gag-specific immunity before virus challenge. However, virus control was short-lived, and indications of viral escape were evident as early as 6 months postinfection. The implications of these results in vaccine design and clinical testing are discussed.


Journal of Virology | 2006

Vaccine-Induced Cellular Immune Responses Reduce Plasma Viral Concentrations after Repeated Low-Dose Challenge with Pathogenic Simian Immunodeficiency Virus SIVmac239

Nancy A. Wilson; Jason S. Reed; Gnankang Napoé; Shari M. Piaskowski; Andy Szymanski; Jessica Furlott; Edna J. Gonzalez; Levi Yant; Nicholas J. Maness; Gemma E. May; Taeko Soma; Matthew R. Reynolds; Eva G. Rakasz; Richard Rudersdorf; Adrian B. McDermott; David H. O'Connor; Thomas C. Friedrich; David B. Allison; Amit Patki; Louis J. Picker; Dennis R. Burton; Jing Lin; Lingyi Huang; Deepa Patel; Gwendolyn Heindecker; Jiang Fan; Michael Citron; Melanie Horton; Fubao Wang; Xiaoping Liang

ABSTRACT The goal of an AIDS vaccine regimen designed to induce cellular immune responses should be to reduce the viral set point and preserve memory CD4 lymphocytes. Here we investigated whether vaccine-induced cellular immunity in the absence of any Env-specific antibodies can control viral replication following multiple low-dose challenges with the highly pathogenic SIVmac239 isolate. Eight Mamu-A*01-positive Indian rhesus macaques were vaccinated with simian immunodeficiency virus (SIV) gag, tat, rev, and nef using a DNA prime-adenovirus boost strategy. Peak viremia (P = 0.007) and the chronic phase set point (P = 0.0192) were significantly decreased in the vaccinated cohort, out to 1 year postinfection. Loss of CD4+ memory populations was also ameliorated in vaccinated animals. Interestingly, only one of the eight vaccinees developed Env-specific neutralizing antibodies after infection. The control observed was significantly improved over that observed in animals vaccinated with SIV gag only. Vaccine-induced cellular immune responses can, therefore, exert a measure of control over replication of the AIDS virus in the complete absence of neutralizing antibody and give us hope that a vaccine designed to induce cellular immune responses might control viral replication.


Clinical Infectious Diseases | 2008

Safety and Immunogenicity of a Replication-Incompetent Adenovirus Type 5 HIV-1 Clade B gag/pol/nef Vaccine in Healthy Adults

Frances Priddy; Deborah D. Brown; James G. Kublin; Kathleen Monahan; David P. Wright; Jacob Lalezari; Steven Santiago; Michael Marmor; Michelle Lally; Richard M. Novak; Stephen Brown; Priya Kulkarni; Sheri A. Dubey; Lisa S. Kierstead; Danilo R. Casimiro; Robin Mogg; Mark J. DiNubile; John W. Shiver; Randi Leavitt; Michael N. Robertson; Devan V. Mehrotra; Erin Quirk

BACKGROUND The safety and immunogenicity of the MRK adenovirus type 5 human immunodeficiency virus type 1 clade B gag/pol/nef vaccine, a replication-incompetent adenovirus type 5-vectored vaccine designed to elicit cell-mediated immunity against conserved human immunodeficiency virus proteins, was assessed in a phase 1 trial. METHODS Healthy adults not infected with human immunodeficiency virus were enrolled in a multicenter, dose-escalating, blind, placebo-controlled study to evaluate a 3-dose homologous prime-boost regimen of the trivalent MRK adenovirus type 5 human immunodeficiency virus type 1 vaccine containing from 3 x 10(6) to 1 x 10(11) viral particles per 1-mL dose administered on day 1, during week 4 and during week 26. Adverse events were recorded for 29 days after each intradeltoid injection. The primary immunogenicity end point was the proportion of study participants with a positive unfractionated Gag-, Pol-, or Nef-specific interferon-gamma enzyme-linked immunosorbent spot response measured 4 weeks after administration of the last dose. RESULTS Of 259 randomized individuals, 257 (99%) received > or = 1 dose of vaccine or placebo and were included in the safety analyses. Enzyme-linked immunosorbent spot results were available for 217 study participants (84%) at week 30. No serious vaccine-related adverse events occurred. No study participant discontinued participation because of vaccine-related adverse events. The frequency of injection-site reactions was dose dependent. Vaccine doses of > or = 3 x 10(9) viral particles elicited positive enzyme-linked immunosorbent spot responses to > or = 1 vaccine component in > 60% of recipients. High baseline antibody titers against adenovirus type 5 diminished enzyme-linked immunosorbent spot responses at all doses except the 3 x 10(10) viral particle dose. CONCLUSIONS The vaccine was generally well tolerated and induced cell-mediated immune responses against human immunodeficiency virus type 1 peptides in most healthy adults. Despite these findings, vaccination in a proof-of-concept trial with use of this vaccine was discontinued because of lack of efficacy.


Nature Medicine | 2011

Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial

Morgane Rolland; Sodsai Tovanabutra; Allan C. deCamp; Nicole Frahm; Peter B. Gilbert; Eric Sanders-Buell; Laura Heath; Craig A. Magaret; Meera Bose; Andrea Bradfield; Annemarie O'Sullivan; Jacqueline Crossler; Teresa Jones; Marty Nau; Kim Wong; Hong Zhao; Dana N. Raugi; Stephanie Sorensen; Julia N. Stoddard; Brandon Maust; Wenjie Deng; John Hural; Sheri A. Dubey; Nelson L. Michael; John W. Shiver; Lawrence Corey; Fusheng Li; Steve Self; Jerome H. Kim; Susan Buchbinder

We analyzed HIV-1 genome sequences from 68 newly infected volunteers in the STEP HIV-1 vaccine trial. To determine whether the vaccine exerted selective T cell pressure on breakthrough viruses, we identified potential T cell epitopes in the founder sequences and compared them to epitopes in the vaccine. We found greater distances to the vaccine sequence for sequences from vaccine recipients than from placebo recipients. The most significant signature site distinguishing vaccine from placebo recipients was Gag amino acid 84, a site encompassed by several epitopes contained in the vaccine and restricted by human leukocyte antigen (HLA) alleles common in the study cohort. Moreover, the extended divergence was confined to the vaccine components of the virus (HIV-1 Gag, Pol and Nef) and not found in other HIV-1 proteins. These results represent what is to our knowledge the first evidence of selective pressure from vaccine-induced T cell responses on HIV-1 infection in humans.


Vaccine | 2010

International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: Correlates of high Ad5 titers and implications for potential HIV vaccine trials

T. Christopher Mast; Lisa Kierstead; Swati B. Gupta; Alexander Nikas; Esper G. Kallas; Vladimir Novitsky; Bernard Mbewe; Punee Pitisuttithum; Mauro Schechter; Eftyhia Vardas; Nathan D. Wolfe; Miguel Aste-Amezaga; Danilo R. Casimiro; Paul M. Coplan; Walter L. Straus; John W. Shiver

Replication-defective adenoviruses have been utilized as candidate HIV vaccine vectors. Few studies have described the international epidemiology of pre-existing immunity to adenoviruses. We enrolled 1904 participants in a cross-sectional serological survey at seven sites in Africa, Brazil, and Thailand to assess neutralizing antibodies (NA) for adenovirus types Ad5, Ad6, Ad26 and Ad36. Clinical trial samples were used to assess NA titers from the US and Europe. The proportions of participants that were negative were 14.8% (Ad5), 31.5% (Ad6); 41.2% (Ad26) and 53.6% (Ad36). Adenovirus NA titers varied by geographic location and were higher in non-US and non-European settings, especially Thailand. In multivariate logistic regression analysis, geographic setting (non-US and non-European settings) was statistically significantly associated with having higher Ad5 titers; participants from Thailand had the highest odds of having high Ad5 titers (adjusted OR=3.53, 95% CI: 2.24, 5.57). Regardless of location, titers of Ad5NA were the highest and Ad36 NA were the lowest. Coincident Ad5/6 titers were lower than either Ad5 or Ad6 titers alone. Understanding pre-existing immunity to candidate vaccine vectors may contribute to the evaluation of vaccines in international populations.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge

Gayathri Bommakanti; Michael Citron; Robert W. Hepler; Cheryl Callahan; Gwendolyn J. Heidecker; Tariq Ahmad Najar; Xianghan Lu; Joseph G. Joyce; John W. Shiver; Danilo R. Casimiro; Jan ter Meulen; Xiaoping Liang; Raghavan Varadarajan

Influenza HA is the primary target of neutralizing antibodies during infection, and its sequence undergoes genetic drift and shift in response to immune pressure. The receptor binding HA1 subunit of HA shows much higher sequence variability relative to the metastable, fusion-active HA2 subunit, presumably because neutralizing antibodies are primarily targeted against the former in natural infection. We have designed an HA2-based immunogen using a protein minimization approach that incorporates designed mutations to destabilize the low pH conformation of HA2. The resulting construct (HA6) was expressed in Escherichia coli and refolded from inclusion bodies. Biophysical studies and mutational analysis of the protein indicate that it is folded into the desired neutral pH conformation competent to bind the broadly neutralizing HA2 directed monoclonal 12D1, not the low pH conformation observed in previous studies. HA6 was highly immunogenic in mice and the mice were protected against lethal challenge by the homologous A/HK/68 mouse-adapted virus. An HA6-like construct from another H3 strain (A/Phil/2/82) also protected mice against A/HK/68 challenge. Regions included in HA6 are highly conserved within a subtype and are fairly well conserved within a clade. Targeting the highly conserved HA2 subunit with a bacterially produced immunogen is a vaccine strategy that may aid in pandemic preparedness.


Journal of Immunology | 2002

Potent CD4+ T Cell Responses Elicited by a Bicistronic HIV-1 DNA Vaccine Expressing gp120 and GM-CSF

Dan H. Barouch; Sampa Santra; Klara Tenner-Racz; Paul Racz; Marcelo J. Kuroda; Joern E. Schmitz; Shawn S. Jackson; Michelle A. Lifton; Dan C. Freed; Helen C. Perry; Mary-Ellen Davies; John W. Shiver; Norman L. Letvin

Virus-specific CD4+ T cell responses have been shown to play a critical role in controlling HIV-1 replication. Candidate HIV-1 vaccines should therefore elicit potent CD4+ as well as CD8+ T cell responses. In this report we investigate the ability of plasmid GM-CSF to augment CD4+ T cell responses elicited by an HIV-1 gp120 DNA vaccine in mice. Coadministration of a plasmid expressing GM-CSF with the gp120 DNA vaccine led to only a marginal increase in gp120-specific splenocyte CD4+ T cell responses. However, immunization with a bicistronic plasmid that coexpressed gp120 and GM-CSF under control of a single promoter led to a dramatic augmentation of vaccine-elicited CD4+ T cell responses, as measured by both cellular proliferation and ELISPOT assays. This augmentation of CD4+ T cell responses was selective, since vaccine-elicited Ab and CD8+ T cell responses were not significantly changed by the addition of GM-CSF. A 100-fold lower dose of the gp120/GM-CSF bicistronic DNA vaccine was required to elicit detectable gp120-specific splenocyte proliferative responses compared with the monocistronic gp120 DNA vaccine. Consistent with these findings, i.m. injection of the gp120/GM-CSF bicistronic DNA vaccine evoked a more extensive cellular infiltrate at the site of inoculation than the monocistronic gp120 DNA vaccine. These results demonstrate that bicistronic DNA vaccines containing GM-CSF elicit remarkably potent CD4+ T cell responses and suggest that optimal Th cell priming requires the precise temporal and spatial codelivery of Ag and GM-CSF.

Collaboration


Dive into the John W. Shiver's collaboration.

Top Co-Authors

Avatar

Emilio A. Emini

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Tong-Ming Fu

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Mary-Ellen Davies

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Helen C. Perry

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge