Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John W. Wallis is active.

Publication


Featured researches published by John W. Wallis.


Nature | 2005

Initial sequence of the chimpanzee genome and comparison with the human genome

Tarjei S. Mikkelsen; LaDeana W. Hillier; Evan E. Eichler; Michael C. Zody; David B. Jaffe; Shiaw-Pyng Yang; Wolfgang Enard; Ines Hellmann; Kerstin Lindblad-Toh; Tasha K. Altheide; Nicoletta Archidiacono; Peer Bork; Jonathan Butler; Jean L. Chang; Ze Cheng; Asif T. Chinwalla; Pieter J. de Jong; Kimberley D. Delehaunty; Catrina C. Fronick; Lucinda L. Fulton; Yoav Gilad; Gustavo Glusman; Sante Gnerre; Tina Graves; Toshiyuki Hayakawa; Karen E. Hayden; Xiaoqiu Huang; Hongkai Ji; W. James Kent; Mary Claire King

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.


The New England Journal of Medicine | 2009

Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome

Elaine R. Mardis; Li Ding; David J. Dooling; David E. Larson; Michael D. McLellan; Ken Chen; Daniel C. Koboldt; Robert S. Fulton; Kim D. Delehaunty; Sean McGrath; Lucinda A. Fulton; Devin P. Locke; Vincent Magrini; Rachel Abbott; Tammi L. Vickery; Jerry S. Reed; Jody S. Robinson; Todd Wylie; Scott M. Smith; Lynn K. Carmichael; James M. Eldred; Christopher C. Harris; Jason Walker; Joshua B. Peck; Feiyu Du; Adam F. Dukes; Gabriel E. Sanderson; Anthony M. Brummett; Eric Clark; Joshua F. McMichael

BACKGROUND The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Nature | 2012

Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing

Li Ding; Timothy J. Ley; David E. Larson; Christopher A. Miller; Daniel C. Koboldt; John S. Welch; Julie Ritchey; Margaret A. Young; Tamara Lamprecht; Michael D. McLellan; Joshua F. McMichael; John W. Wallis; Charles Lu; Dong Shen; Christopher C. Harris; David J. Dooling; Robert S. Fulton; Lucinda Fulton; Ken Chen; Heather K. Schmidt; Joelle Kalicki-Veizer; Vincent Magrini; Lisa Cook; Sean McGrath; Tammi L. Vickery; Michael C. Wendl; Sharon Heath; Mark A. Watson; Daniel C. Link; Michael H. Tomasson

Most patients with acute myeloid leukaemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level. To determine the mutational spectrum associated with relapse, we sequenced the primary tumour and relapse genomes from eight AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (for example, WAC, SMC3, DIS3, DDX41 and DAXX) in AML, we also found two major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumour gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumour mutations in all eight cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions.


Nature | 2010

Genome remodelling in a basal-like breast cancer metastasis and xenograft.

Li Ding; Matthew J. Ellis; Shunqiang Li; David E. Larson; Ken Chen; John W. Wallis; Christopher C. Harris; Michael D. McLellan; Robert S. Fulton; Lucinda Fulton; Rachel Abbott; Jeremy Hoog; David J. Dooling; Daniel C. Koboldt; Heather K. Schmidt; Joelle Kalicki; Qunyuan Zhang; Lei Chen; Ling Lin; Michael C. Wendl; Joshua F. McMichael; Vincent Magrini; Lisa Cook; Sean McGrath; Tammi L. Vickery; Elizabeth L. Appelbaum; Katherine DeSchryver; Sherri R. Davies; Therese Guintoli; Li Lin

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


Nature Methods | 2009

BreakDancer: An algorithm for high resolution mapping of genomic structural variation

Ken Chen; John W. Wallis; Michael D. McLellan; David E. Larson; Joelle Kalicki; Craig S. Pohl; Sean McGrath; Michael C. Wendl; Qunyuan Zhang; Devin P. Locke; Xiaoqi Shi; Robert S. Fulton; Timothy J. Ley; Richard Wilson; Li Ding; Elaine R. Mardis

Detection and characterization of genomic structural variation are important for understanding the landscape of genetic variation in human populations and in complex diseases such as cancer. Recent studies demonstrate the feasibility of detecting structural variation using next-generation, short-insert, paired-end sequencing reads. However, the utility of these reads is not entirely clear, nor are the analysis methods with which accurate detection can be achieved. The algorithm BreakDancer predicts a wide variety of structural variants including insertion-deletions (indels), inversions and translocations. We examined BreakDancers performance in simulation, in comparison with other methods and in analyses of a sample from an individual with acute myeloid leukemia and of samples from the 1,000 Genomes trio individuals. BreakDancer sensitively and accurately detected indels ranging from 10 base pairs to 1 megabase pair that are difficult to detect via a single conventional approach.


Nature | 2012

Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition

Matthew J. Ellis; Li Ding; Dong Shen; Jingqin Luo; Vera J. Suman; John W. Wallis; Brian A. Van Tine; Jeremy Hoog; Reece J. Goiffon; Theodore C. Goldstein; Sam Ng; Li Lin; Robert Crowder; Jacqueline Snider; Karla V. Ballman; Jason D. Weber; Ken Chen; Daniel C. Koboldt; Cyriac Kandoth; William Schierding; Joshua F. McMichael; Christopher A. Miller; Charles Lu; Christopher C. Harris; Michael D. McLellan; Michael C. Wendl; Katherine DeSchryver; D. Craig Allred; Laura Esserman; Gary Unzeitig

To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.


Cell | 2012

GENOMIC LANDSCAPE OF NON-SMALL CELL LUNG CANCER IN SMOKERS AND NEVER SMOKERS

Ramaswamy Govindan; Li Ding; Malachi Griffith; Janakiraman Subramanian; Nathan D. Dees; Krishna L. Kanchi; Christopher A. Maher; Robert S. Fulton; Lucinda Fulton; John W. Wallis; Ken Chen; Jason Walker; Sandra A. McDonald; Ron Bose; David M. Ornitz; Dong Hai Xiong; Ming You; David J. Dooling; Mark A. Watson; Elaine R. Mardis; Richard Wilson

We report the results of whole-genome and transcriptome sequencing of tumor and adjacent normal tissue samples from 17 patients with non-small cell lung carcinoma (NSCLC). We identified 3,726 point mutations and more than 90 indels in the coding sequence, with an average mutation frequency more than 10-fold higher in smokers than in never-smokers. Novel alterations in genes involved in chromatin modification and DNA repair pathways were identified, along with DACH1, CFTR, RELN, ABCB5, and HGF. Deep digital sequencing revealed diverse clonality patterns in both never-smokers and smokers. All validated EFGR and KRAS mutations were present in the founder clones, suggesting possible roles in cancer initiation. Analysis revealed 14 fusions, including ROS1 and ALK, as well as novel metabolic enzymes. Cell-cycle and JAK-STAT pathways are significantly altered in lung cancer, along with perturbations in 54 genes that are potentially targetable with currently available drugs.


Nature | 2002

A physical map of the mouse genome

Simon G. Gregory; Mandeep Sekhon; Jacqueline E. Schein; Shaying Zhao; Kazutoyo Osoegawa; Carol Scott; Richard S. Evans; Paul W. Burridge; Tony Cox; Christopher A. Fox; Richard D. Hutton; Ian R. Mullenger; Kimbly J. Phillips; James Smith; Jim Stalker; Glen Threadgold; Ewan Birney; Kristine M. Wylie; Asif T. Chinwalla; John W. Wallis; LaDeana W. Hillier; Jason Carter; Tony Gaige; Sara Jaeger; Colin Kremitzki; Dan Layman; Jason Maas; Rebecca McGrane; Kelly Mead; Rebecca Walker

A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human–mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.


Nature | 2004

A physical map of the chicken genome

John W. Wallis; Jan Aerts; M. A. M. Groenen; R.P.M.A. Crooijmans; Dan Layman; Tina Graves; Debra E Scheer; Colin Kremitzki; Mary J Fedele; Nancy K Mudd; Marco Cardenas; Jamey Higginbotham; Jason Carter; Rebecca McGrane; Tony Gaige; Kelly Mead; Jason Walker; Derek Albracht; Jonathan Davito; Shiaw-Pyng Yang; Shin Leong; Asif T. Chinwalla; Mandeep Sekhon; Kristine M. Wylie; Jerry B. Dodgson; Michael N Romanov; Hans H. Cheng; Pieter J. de Jong; Kazutoyo Osoegawa; Mikhail Nefedov

Strategies for assembling large, complex genomes have evolved to include a combination of whole-genome shotgun sequencing and hierarchal map-assisted sequencing. Whole-genome maps of all types can aid genome assemblies, generally starting with low-resolution cytogenetic maps and ending with the highest resolution of sequence. Fingerprint clone maps are based upon complete restriction enzyme digests of clones representative of the target genome, and ultimately comprise a near-contiguous path of clones across the genome. Such clone-based maps are used to validate sequence assembly order, supply long-range linking information for assembled sequences, anchor sequences to the genetic map and provide templates for closing gaps. Fingerprint maps are also a critical resource for subsequent functional genomic studies, because they provide a redundant and ordered sampling of the genome with clones. In an accompanying paper we describe the draft genome sequence of the chicken, Gallus gallus, the first species sequenced that is both a model organism and a global food source. Here we present a clone-based physical map of the chicken genome at 20-fold coverage, containing 260 contigs of overlapping clones. This map represents approximately 91% of the chicken genome and enables identification of chicken clones aligned to positions in other sequenced genomes.


Nature Genetics | 2008

Evolutionary toggling of the MAPT 17q21.31 inversion region

Michael C. Zody; Zhaoshi Jiang; Hon Chung Fung; Francesca Antonacci; LaDeana W. Hillier; Maria Francesca Cardone; Tina Graves; Jeffrey M. Kidd; Ze Cheng; Amr Abouelleil; Lin Chen; John W. Wallis; Jarret Glasscock; Richard Wilson; Amy Denise Reily; Jaime Duckworth; Mario Ventura; John Hardy; Wesley C. Warren; Evan E. Eichler

Using comparative sequencing approaches, we investigated the evolutionary history of the European-enriched 17q21.31 MAPT inversion polymorphism. We present a detailed, BAC-based sequence assembly of the inverted human H2 haplotype and compare it to the sequence structure and genetic variation of the corresponding 1.5-Mb region for the noninverted H1 human haplotype and that of chimpanzee and orangutan. We found that inversion of the MAPT region is similarly polymorphic in other great ape species, and we present evidence that the inversions occurred independently in chimpanzees and humans. In humans, the inversion breakpoints correspond to core duplications with the LRRC37 gene family. Our analysis favors the H2 configuration and sequence haplotype as the likely great ape and human ancestral state, with inversion recurrences during primate evolution. We show that the H2 architecture has evolved more extensive sequence homology, perhaps explaining its tendency to undergo microdeletion associated with mental retardation in European populations.

Collaboration


Dive into the John W. Wallis's collaboration.

Top Co-Authors

Avatar

Li Ding

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ken Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Elaine R. Mardis

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael D. McLellan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert S. Fulton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Ley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David E. Larson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael C. Wendl

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Koboldt

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge