Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johnny C. Ho is active.

Publication


Featured researches published by Johnny C. Ho.


Nature Materials | 2009

Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates

Zhiyong Fan; Haleh Razavi; Jae-won Do; Aimee Moriwaki; Onur Ergen; Yu-Lun Chueh; Paul W. Leu; Johnny C. Ho; Toshitake Takahashi; Lothar A. Reichertz; Steven L. Neale; Kyoungsik Yu; Ming C. Wu; Joel W. Ager; Ali Javey

Solar energy represents one of the most abundant and yet least harvested sources of renewable energy. In recent years, tremendous progress has been made in developing photovoltaics that can be potentially mass deployed. Of particular interest to cost-effective solar cells is to use novel device structures and materials processing for enabling acceptable efficiencies. In this regard, here, we report the direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules. As an example, we demonstrate a photovoltaic structure that incorporates three-dimensional, single-crystalline n-CdS nanopillars, embedded in polycrystalline thin films of p-CdTe, to enable high absorption of light and efficient collection of the carriers. Through experiments and modelling, we demonstrate the potency of this approach for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars.


Nature Materials | 2010

Nanowire active-matrix circuitry for low-voltage macroscale artificial skin

Kuniharu Takei; Toshitake Takahashi; Johnny C. Ho; Hyunhyub Ko; Andrew G. Gillies; Paul W. Leu; Ronald S. Fearing; Ali Javey

Large-scale integration of high-performance electronic components on mechanically flexible substrates may enable new applications in electronics, sensing and energy. Over the past several years, tremendous progress in the printing and transfer of single-crystalline, inorganic micro- and nanostructures on plastic substrates has been achieved through various process schemes. For instance, contact printing of parallel arrays of semiconductor nanowires (NWs) has been explored as a versatile route to enable fabrication of high-performance, bendable transistors and sensors. However, truly macroscale integration of ordered NW circuitry has not yet been demonstrated, with the largest-scale active systems being of the order of 1 cm(2) (refs 11,15). This limitation is in part due to assembly- and processing-related obstacles, although larger-scale integration has been demonstrated for randomly oriented NWs (ref. 16). Driven by this challenge, here we demonstrate macroscale (7×7 cm(2)) integration of parallel NW arrays as the active-matrix backplane of a flexible pressure-sensor array (18×19 pixels). The integrated sensor array effectively functions as an artificial electronic skin, capable of monitoring applied pressure profiles with high spatial resolution. The active-matrix circuitry operates at a low operating voltage of less than 5 V and exhibits superb mechanical robustness and reliability, without performance degradation on bending to small radii of curvature (2.5 mm) for over 2,000 bending cycles. This work presents the largest integration of ordered NW-array active components, and demonstrates a model platform for future integration of nanomaterials for practical applications.


Nano Letters | 2009

Diameter-Dependent Electron Mobility of InAs Nanowires

Alexandra C. Ford; Johnny C. Ho; Yu-Lun Chueh; Yu-Chih Tseng; Zhiyong Fan; Jing Guo; Jeffrey Bokor; Ali Javey

Temperature-dependent I-V and C-V spectroscopy of single InAs nanowire field-effect transistors were utilized to directly shed light on the intrinsic electron transport properties as a function of nanowire radius. From C-V characterizations, the densities of thermally activated fixed charges and trap states on the surface of untreated (i.e., without any surface functionalization) nanowires are investigated while enabling the accurate measurement of the gate oxide capacitance, therefore leading to the direct assessment of the field-effect mobility for electrons. The field-effect mobility is found to monotonically decrease as the radius is reduced to <10 nm, with the low temperature transport data clearly highlighting the drastic impact of the surface roughness scattering on the mobility degradation for miniaturized nanowires. More generally, the approach presented here may serve as a versatile and powerful platform for in-depth characterization of nanoscale, electronic materials.


Applied Physics Letters | 2004

Effects of electron concentration on the optical absorption edge of InN

J. Wu; W. Walukiewicz; S. X. Li; R. Armitage; Johnny C. Ho; E. R. Weber; E. E. Haller; Hai Lu; W. J. Schaff; A. Barcz; R. Jakieła

InN films with free electron concentrations ranging from mid-1017 to mid-1020 cm−3 have been studied using optical absorption, Hall effect, and secondary ion mass spectrometry. The optical absorption edge covers a wide energy range from the intrinsic band gap of InN of about 0.7 to about 1.7 eV which is close to the previously accepted band gap of InN. The electron concentration dependence of the optical absorption edge energy is fully accounted for by the Burstein–Moss shift. Results of secondary ion mass spectrometry measurements indicate that O and H impurities cannot fully account for the free electron concentration in the films.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry

Zhiyong Fan; Johnny C. Ho; Zachery A. Jacobson; Haleh Razavi; Ali Javey

We report large-scale integration of nanowires for heterogeneous, multifunctional circuitry that utilizes both the sensory and electronic functionalities of single crystalline nanomaterials. Highly ordered and parallel arrays of optically active CdSe nanowires and high-mobility Ge/Si nanowires are deterministically positioned on substrates, and configured as photodiodes and transistors, respectively. The nanowire sensors and electronic devices are then interfaced to enable an all-nanowire circuitry with on-chip integration, capable of detecting and amplifying an optical signal with high sensitivity and precision. Notably, the process is highly reproducible and scalable with a yield of ≈80% functional circuits, therefore, enabling the fabrication of large arrays (i.e., 13 × 20) of nanowire photosensor circuitry with image-sensing functionality. The ability to interface nanowire sensors with integrated electronics on large scales and with high uniformity presents an important advance toward the integration of nanomaterials for sensor applications.


Advanced Materials | 2014

Interface Engineering for High‐Performance Top‐Gated MoS2 Field‐Effect Transistors

Xuming Zou; Jingli Wang; Chung-Hua Chiu; Yun Wu; Xiangheng Xiao; Changzhong Jiang; Wen-Wei Wu; Liqiang Mai; Tangsheng Chen; Jinchai Li; Johnny C. Ho; Lei Liao

In recent years, due to the intriguing electrical and optical characteristics, two dimensional layered transition metal dichalcogenides such as MoS2 have attracted tremendous research attention. In a distinct contrast to the bandgap issue of graphene, MoS2 is semiconducting with a satisfied thickness-dependent bandgap of 1.2 to 1.8 eV, which can enable lots of fascinating device applications. However, until now, majority of the efforts have been focused on the integration of MoS2 devices in the back- or dual-gated geometry due to the difficulty of compact and conformal top-gated dielectric deposition directly onto the 2-D channel for the realization of high-performance top-gated FETs. In this regard, interface or dielectric engineering is an important step towards the practical implementation of MoS2 devices with the optimized performance.


ACS Nano | 2014

Single InAs Nanowire Room-Temperature Near-Infrared Photodetectors

Jinshui Miao; Weida Hu; Nan Guo; Zhenyu Lu; Xuming Zou; Lei Liao; Suixing Shi; Pingping Chen; Zhiyong Fan; Johnny C. Ho; Tianxin Li; Xiao Shuang Chen; Wei Lu

Here we report InAs nanowire (NW) near-infrared photodetectors having a detection wavelength up to ∼1.5 μm. The single InAs NW photodetectors displayed minimum hysteresis with a high Ion/Ioff ratio of 10(5). At room temperature, the Schottky-Ohmic contacted photodetectors had an external photoresponsivity of ∼5.3 × 10(3) AW(-1), which is ∼300% larger than that of Ohmic-Ohmic contacted detectors (∼1.9 × 10(3) AW(-1)). A large enhancement in photoresponsivity (∼300%) had also been achieved in metal Au-cluster-decorated InAs NW photodetectors due to the formation of Schottky junctions at the InAs/Au cluster contacts. The photocurrent decreased when the photodetectors were exposed to ambient atmosphere because of the high surface electron concentration and rich surface defect states in InAs NWs. A theoretical model based on charge transfer and energy band change is proposed to explain this observed performance. To suppress the negative effects of surface defect states and atmospheric molecules, new InAs NW photodetectors with a half-wrapped top-gate had been fabricated by using 10 nm HfO2 as the top-gate dielectric.


Nano Letters | 2009

Wafer-scale, sub-5 nm junction formation by monolayer doping and conventional spike annealing.

Johnny C. Ho; Roie Yerushalmi; Gregory Smith; Prashant Majhi; Joseph Bennett; Jeffri Halim; Vladimir N. Faifer; Ali Javey

We report the formation of sub-5 nm ultrashallow junctions in 4 in. Si wafers enabled by the molecular monolayer doping of phosphorus and boron atoms and the use of conventional spike annealing. The junctions are characterized by secondary ion mass spectrometry and noncontact sheet resistance measurements. It is found that the majority ( approximately 70%) of the incorporated dopants are electrically active, therefore enabling a low sheet resistance for a given dopant areal dose. The wafer-scale uniformity is investigated and found to be limited by the temperature homogeneity of the spike anneal tool used in the experiments. Notably, minimal junction leakage currents (<1 microA/cm(2)) are observed that highlights the quality of the junctions formed by this process. The results clearly demonstrate the versatility and potency of the monolayer doping approach for enabling controlled, molecular-scale ultrashallow junction formation without introducing defects in the semiconductor.


Applied Physics Letters | 2007

Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing

Roie Yerushalmi; Zachery A. Jacobson; Johnny C. Ho; Zhiyong Fan; Ali Javey

A differential roll printing strategy is developed to enable large-scale and uniform assembly of highly aligned and ordered nanowire arrays on various rigid and flexible substrate materials. The dynamics of the process are explored by tuning the linear sliding motion of the roller with respect to the rolling motion, clearly demonstrating the importance of the differential rolling process in the controlled assembly of nanowires. The potency and versatility of the method is further demonstrated by fabrication of nanowire transistor arrays on flexible substrates.


Small | 2015

High‐Responsivity Graphene/InAs Nanowire Heterojunction Near‐Infrared Photodetectors with Distinct Photocurrent On/Off Ratios

Jinshui Miao; Weida Hu; Nan Guo; Zhenyu Lu; Xingqiang Liu; Lei Liao; Pingping Chen; Tao Jiang; Shiwei Wu; Johnny C. Ho; Lin Wang; Xiaoshuang Chen; Wei Lu

Graphene is a promising candidate material for high-speed and ultra-broadband photodetectors. However, graphene-based photodetectors suffer from low photoreponsivity and I(light)/I(dark) ratios due to their negligible-gap nature and small optical absorption. Here, a new type of graphene/InAs nanowire (NW) vertically stacked heterojunction infrared photodetector is reported, with a large photoresponsivity of 0.5 AW(-1) and I(light)/I(dark) ratio of 5 × 10(2), while the photoresponsivity and I(light)/I(dark) ratio of graphene infrared photodetectors are 0.1 mAW(-1) and 1, respectively. The Fermi level (E(F)) of graphene can be widely tuned by the gate voltage owing to its 2D nature. As a result, the back-gated bias can modulate the Schottky barrier (SB) height at the interface between graphene and InAs NWs. Simulations further demonstrate the rectification behavior of graphene/InAs NW heterojunctions and the tunable SB controls charge transport across the vertically stacked heterostructure. The results address key challenges for graphene-based infrared detectors, and are promising for the development of graphene electronic and optoelectronic applications.

Collaboration


Dive into the Johnny C. Ho's collaboration.

Top Co-Authors

Avatar

SenPo Yip

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ning Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fengyun Wang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ali Javey

University of California

View shared research outputs
Top Co-Authors

Avatar

Fei Xiu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ming Fang

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Hao Lin

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Guofa Dong

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Fan

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yu-Lun Chueh

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge