Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johnny Lam is active.

Publication


Featured researches published by Johnny Lam.


Journal of Controlled Release | 2013

Osteochondral Tissue Regeneration using a Bilayered Composite Hydrogel with Modulating Dual Growth Factor Release Kinetics in a Rabbit Model

Kyobum Kim; Johnny Lam; Steven Lu; Patrick P. Spicer; A. Lueckgen; Yasuhiko Tabata; Mark E. Wong; John A. Jansen; Antonios G. Mikos; F.K. Kasper

Biodegradable oligo(poly(ethylene glycol) fumarate) (OPF) composite hydrogels have been investigated for the delivery of growth factors (GFs) with the aid of gelatin microparticles (GMPs) and stem cell populations for osteochondral tissue regeneration. In this study, a bilayered OPF composite hydrogel that mimics the distinctive hierarchical structure of native osteochondral tissue was utilized to investigate the effect of transforming growth factor-β3 (TGF-β3) with varying release kinetics and/or insulin-like growth factor-1 (IGF-1) on osteochondral tissue regeneration in a rabbit full-thickness osteochondral defect model. The four groups investigated included (i) a blank control (no GFs), (ii) GMP-loaded IGF-1 alone, (iii) GMP-loaded IGF-1 and gel-loaded TGF-β3, and (iv) GMP-loaded IGF-1 and GMP-loaded TGF-β3 in OPF composite hydrogels. The results of an in vitro release study demonstrated that TGF-β3 release kinetics could be modulated by the GF incorporation method. At 12weeks post-implantation, the quality of tissue repair in both chondral and subchondral layers was analyzed based on quantitative histological scoring. All groups incorporating GFs resulted in a significant improvement in cartilage morphology compared to the control. Single delivery of IGF-1 showed higher scores in subchondral bone morphology as well as chondrocyte and glycosaminoglycan amount in adjacent cartilage tissue when compared to a dual delivery of IGF-1 and TGF-β3, independent of the TGF-β3 release kinetics. The results suggest that although the dual delivery of TGF-β3 and IGF-1 may not synergistically enhance the quality of engineered tissue, the delivery of IGF-1 alone from bilayered composite hydrogels positively affects osteochondral tissue repair and holds promise for osteochondral tissue engineering applications.


Biomaterials | 2014

Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair

Steven Lu; Johnny Lam; Jordan E. Trachtenberg; Esther J. Lee; Hajar Seyednejad; Jeroen J.J.P. van den Beucken; Yasuhiko Tabata; Mark E. Wong; John A. Jansen; Antonios G. Mikos; F. Kurtis Kasper

The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the structural layers of the osteochondral unit, and insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) were loaded into gelatin microparticles and embedded within the OPF hydrogel matrix in a spatially controlled manner. Three different scaffold formulations were implanted in a medial femoral condyle osteochondral defect: 1) IGF-1 in the chondral layer, 2) BMP-2 in the subchondral layer, and 3) IGF-1 and BMP-2 in their respective separate layers. The quantity and quality of osteochondral repair was evaluated at 6 and 12 weeks with histological scoring and micro-computed tomography (micro-CT). While histological scoring results at 6 weeks showed no differences between experimental groups, micro-CT analysis revealed that the delivery of BMP-2 alone increased the number of bony trabecular islets formed, an indication of early bone formation, over that of IGF-1 delivery alone. At 12 weeks post-implantation, minimal differences were detected between the three groups for cartilage repair. However, the dual delivery of IGF-1 and BMP-2 had a higher proportion of subchondral bone repair, greater bone growth at the defect margins, and lower bone specific surface than the single delivery of IGF-1. These results suggest that the delivery of BMP-2 enhances subchondral bone formation and that, while the dual delivery of IGF-1 and BMP-2 in separate layers does not improve cartilage repair under the conditions studied, they may synergistically enhance the degree of subchondral bone formation. Overall, bilayered OPF hydrogel composites demonstrate potential as spatially-guided, multiple growth factor release vehicles for osteochondral tissue repair.


Advanced Drug Delivery Reviews | 2015

Strategies for controlled delivery of biologics for cartilage repair

Johnny Lam; Steven Lu; F. Kurtis Kasper; Antonios G. Mikos

The delivery of biologics is an important component in the treatment of osteoarthritis and the functional restoration of articular cartilage. Numerous factors have been implicated in the cartilage repair process, but the uncontrolled delivery of these factors may not only reduce their full reparative potential but can also cause unwanted morphological effects. It is therefore imperative to consider the type of biologic to be delivered, the method of delivery, and the temporal as well as spatial presentation of the biologic to achieve the desired effect in cartilage repair. Additionally, the delivery of a single factor may not be sufficient in guiding neo-tissue formation, motivating recent research toward the delivery of multiple factors. This review will discuss the roles of various biologics involved in cartilage repair and the different methods of delivery for appropriate healing responses. A number of spatiotemporal strategies will then be emphasized for the controlled delivery of single and multiple bioactive factors in both in vitro and in vivo cartilage tissue engineering applications.


Biomaterials | 2016

Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(l-Lysine) for applications in cartilage tissue engineering

Johnny Lam; Elisa C. Clark; Eliza Li Shan Fong; Esther J. Lee; Steven Lu; Yasuhiko Tabata; Antonios G. Mikos

To address the lack of reliable long-term solutions for cartilage injuries, strategies in tissue engineering are beginning to leverage developmental processes to spur tissue regeneration. This study focuses on the use of poly(L-lysine) (PLL), previously shown to up-regulate mesenchymal condensation during developmental skeletogenesis in vitro, as an early chondrogenic stimulant of mesenchymal stem cells (MSCs). We characterized the effect of PLL incorporation on the swelling and degradation of oligo(poly(ethylene) glycol) fumarate) (OPF)-based hydrogels as functions of PLL molecular weight and dosage. Furthermore, we investigated the effect of PLL incorporation on the chondrogenic gene expression of hydrogel-encapsulated MSCs. The incorporation of PLL resulted in early enhancements of type II collagen and aggrecan gene expression and type II/type I collagen expression ratios when compared to blank controls. The presentation of PLL to MSCs encapsulated in OPF hydrogels also enhanced N-cadherin gene expression under certain culture conditions, suggesting that PLL may induce the expression of condensation markers in synthetic hydrogel systems. In summary, PLL can function as an inductive factor that primes the cellular microenvironment for early chondrogenic gene expression but may require additional biochemical factors for the generation of fully functional chondrocytes.


Acta Biomaterialia | 2014

Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels

Johnny Lam; Steven Lu; Ville V. Meretoja; Yasuhiko Tabata; Antonios G. Mikos; F. Kurtis Kasper

This study investigated the ability of chondrogenic and osteogenic predifferentiation of mesenchymal stem cells (MSCs) to play a role in the development of osteochondral tissue constructs using injectable bilayered oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel composites. We hypothesized that the combinatorial approach of encapsulating cell populations of both chondrogenic and osteogenic lineages in a spatially controlled manner within bilayered constructs would enable these cells to maintain their respective phenotypes via the exchange of biochemical factors even without the influence of external growth factors. During monolayer expansion prior to hydrogel encapsulation, it was found that 7 (CG7) and 14 (CG14) days of MSC exposure to TGF-β3 allowed for the generation of distinct cell populations with corresponding chondrogenic maturities as indicated by increasing aggrecan and type II collagen/type I collagen expression. Chondrogenic and osteogenic cells were then encapsulated within their respective (chondral/subchondral) layers in bilayered hydrogel composites to include four experimental groups. Encapsulated CG7 cells within the chondral layer exhibited enhanced chondrogenic phenotype when compared to other cell populations based on stronger type II collagen and aggrecan gene expression and higher glycosaminoglycan-to-hydroxyproline ratios. Osteogenic cells that were co-cultured with chondrogenic cells (in the chondral layer) showed higher cellularity over time, suggesting that chondrogenic cells stimulated the proliferation of osteogenic cells. Groups with osteogenic cells displayed mineralization in the subchondral layer, confirming the effect of osteogenic predifferentiation. In summary, it was found that MSCs that underwent 7 days, but not 14 days, of chondrogenic predifferentiation most closely resembled the phenotype of native hyaline cartilage when combined with osteogenic cells in a bilayered OPF hydrogel composite, indicating that the duration of chondrogenic preconditioning is an important factor to control. Furthermore, the respective chondrogenic and osteogenic phenotypes were maintained for 28 days in vitro without the need for external growth factors, demonstrating the exciting potential of this novel strategy for the generation of osteochondral tissue constructs for cartilage engineering applications.


Acta Biomaterialia | 2014

Osteochondral Tissue Regeneration Through Polymeric Delivery of DNA Encoding for the SOX Trio and RUNX2

Clark J. Needham; Sarita R. Shah; Rebecca L. Dahlin; Lucas A. Kinard; Johnny Lam; Brendan M. Watson; Steven Lu; F. Kurtis Kasper; Antonios G. Mikos

Native osteochondral repair is often inadequate owing to the inherent properties of the tissue, and current clinical repair strategies can result in healing with a limited lifespan and donor site morbidity. This work investigates the use of polymeric gene therapy to address this problem by delivering DNA encoding for transcription factors complexed with the branched poly(ethylenimine)-hyaluronic acid (bPEI-HA) delivery vector via a porous oligo[poly(ethylene glycol) fumarate] hydrogel scaffold. To evaluate the potential of this approach, a bilayered scaffold mimicking native osteochondral tissue organization was loaded with DNA/bPEI-HA complexes. Next, bilayered implants either unloaded or loaded in a spatial fashion with bPEI-HA and DNA encoding for either Runt-related transcription factor 2 (RUNX2) or SRY (sex determining region Y)-box 5, 6, and 9 (the SOX trio), to generate bone and cartilage tissues respectively, were fabricated and implanted in a rat osteochondral defect. At 6weeks post-implantation, micro-computed tomography analysis and histological scoring were performed on the explants to evaluate the quality and quantity of tissue repair in each group. The incorporation of DNA encoding for RUNX2 in the bone layer of these scaffolds significantly increased bone growth. Additionally, a spatially loaded combination of RUNX2 and SOX trio DNA loading significantly improved healing relative to empty hydrogels or either factor alone. Finally, the results of this study suggest that subchondral bone formation is necessary for correct cartilage healing.


Osteoarthritis and Cartilage | 2014

Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model

Johnny Lam; Steven Lu; Esther J. Lee; Jordan E. Trachtenberg; Ville V. Meretoja; Rebecca L. Dahlin; J.J.J.P. van den Beucken; Yasuhiko Tabata; Mark E. Wong; J.A. Jansen; Antonios G. Mikos; F.K. Kasper

OBJECTIVE To investigate the ability of cell-laden bilayered hydrogels encapsulating chondrogenically and osteogenically (OS) pre-differentiated mesenchymal stem cells (MSCs) to effect osteochondral defect repair in a rabbit model. By varying the period of chondrogenic pre-differentiation from 7 (CG7) to 14 days (CG14), the effect of chondrogenic differentiation stage on osteochondral tissue repair was also investigated. METHODS Rabbit MSCs were subjected to either chondrogenic or osteogenic pre-differentiation, encapsulated within respective chondral/subchondral layers of a bilayered hydrogel construct, and then implanted into femoral condyle osteochondral defects. Rabbits were randomized into one of four groups (MSC/MSC, MSC/OS, CG7/OS, and CG14/OS; chondral/subchondral) and received two similar constructs bilaterally. Defects were evaluated after 12 weeks. RESULTS All groups exhibited similar overall neo-tissue filling. The delivery of OS cells when compared to undifferentiated MSCs in the subchondral construct layer resulted in improvements in neo-cartilage thickness and regularity. However, the addition of CG cells in the chondral layer, with OS cells in the subchondral layer, did not augment tissue repair as influenced by the latter when compared to the control. Instead, CG7/OS implants resulted in more irregular neo-tissue surfaces when compared to MSC/OS implants. Notably, the delivery of CG7 cells, when compared to CG14 cells, with OS cells stimulated morphologically superior cartilage repair. However, neither osteogenic nor chondrogenic pre-differentiation affected detectable changes in subchondral tissue repair. CONCLUSIONS Cartilage regeneration in osteochondral defects can be enhanced by MSCs that are chondrogenically and osteogenically pre-differentiated prior to implantation. Longer chondrogenic pre-differentiation periods, however, lead to diminished cartilage repair.


Acta Biomaterialia | 2014

Synthetic biodegradable hydrogel delivery of demineralized bone matrix for bone augmentation in a rat model.

Lucas A. Kinard; Rebecca L. Dahlin; Johnny Lam; Steven Lu; Esther J. Lee; F. Kurtis Kasper; Antonios G. Mikos

There exists a strong clinical need for a more capable and robust method to achieve bone augmentation, and a system with fine-tuned delivery of demineralized bone matrix (DBM) has the potential to meet that need. As such, the objective of the present study was to investigate a synthetic biodegradable hydrogel for the delivery of DBM for bone augmentation in a rat model. Oligo(poly(ethylene glycol) fumarate) (OPF) constructs were designed and fabricated by varying the content of rat-derived DBM particles (either 1:3, 1:1 or 3:1 DBM:OPF weight ratio on a dry basis) and using two DBM particle size ranges (50-150 or 150-250 μm). The physical properties of the constructs and the bioactivity of the DBM were evaluated. Selected formulations (1:1 and 3:1 with 50-150 μm DBM) were evaluated in vivo compared to an empty control to investigate the effect of DBM dose and construct properties on bone augmentation. Overall, 3:1 constructs with higher DBM content achieved the greatest volume of bone augmentation, exceeding 1:1 constructs and empty implants by 3- and 5-fold, respectively. As such, we have established that a synthetic, biodegradable hydrogel can function as a carrier for DBM, and that the volume of bone augmentation achieved by the constructs correlates directly to the DBM dose.


Data in Brief | 2016

Data describing the swelling behavior and cytocompatibility of biodegradable polyelectrolyte hydrogels incorporating poly(L-lysine) for applications in cartilage tissue engineering

Johnny Lam; Elisa C. Clark; Eliza Li Shan Fong; Esther J. Lee; Steven Lu; Yasuhiko Tabata; Antonios G. Mikos

This data article presents data associated with the research article entitled “Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-lysine) for applications in cartilage tissue engineering” (Lam et al., 2016) [1]. Synthetic hydrogel composites fabricated using oligo(poly(ethylene glycol) fumarate) (OPF) macromers were utilized as vehicles for the incorporation of poly(L-lysine) (PLL) as well as the encapsulation of mesenchymal stem cells (MSCs). PLL-laden and PLL-free hydrogels were fabricated to characterize the main and interaction effects of OPF molecular weight, PLL molecular weight, and PLL loading density on the swelling and degradation of synthetic OPF hydrogels. Cells were then encapsulated within such hydrogels for in vitro culture and examined for viability, biochemical activity, and chondrogenic gene expression. These data, which are supplementary to the associated research article (Lam et al., 2016) [1], are presented here.


Theranostics | 2018

Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct.

Jin Zhou; Xiaoning Yang; Wei Liu; Chunlan Wang; Yuan Shen; Fengzhi Zhang; Huimin Zhu; Hongji Sun; Jiayun Chen; Johnny Lam; Antonios G. Mikos; Changyong Wang

After myocardial infarction (MI), the scar tissue contributes to ventricular dysfunction by electrically uncoupling viable cardiomyocytes in the infarct region. Injection of a conductive hydrogel could not only provide mechanical support to the infarcted region, but also synchronize contraction and restore ventricular function by electrically connecting isolated cardiomyocytes to intact tissue. Methods: We created a conductive hydrogel by introducing graphene oxide (GO) nanoparticles into oligo(poly(ethylene glycol) fumarate) (OPF) hydrogels. The hydrogels were characterized by AFM and electrochemistry workstation. A rat model of myocardial infarction was used to investigate the ability of OPF/GO to improve cardiac electrical propagation in the injured heart in vivo. Echocardiography (ECHO) was used to evaluate heart function 4 weeks after MI. Ca2+ imaging was used to visualize beating cardiomyocytes (CMs). Immunofluorescence staining was used to visualize the expression of cardiac-specific markers. Results: OPF/GO hydrogels had semiconductive properties that were lacking in pure OPF. In addition, the incorporation of GO into OPF hydrogels could improve cell attachment in vitro. Injection of OPF/GO 4 weeks after myocardial infarction in rats enhanced the Ca2+ signal conduction of cardiomyocytes in the infarcted region in comparison with PBS or OPF alone. Moreover, the injection of OPF/GO hydrogel into the infarct region enhanced the generation of cytoskeletal structure and intercalated disc assembly. Echocardiography analysis showed improvement in load-dependent ejection fraction/fractional shortening of heart function 4 weeks after injection. Conclusions: We prepared a conductive hydrogel (OPF/GO) that provide mechanical support and biological conduction in vitro and in vivo. We found that injected OPF/GO hydrogels can provide mechanical support and electric connection between healthy myocardium and the cardiomyocytes in the scar via activating the canonical Wnt signal pathway, thus upregulating the generation of Cx43 and gap junction associated proteins. Injection of OPF/GO hydrogel maintained better heart function after myocardial infarction than the injection of a nonconductive polymer.

Collaboration


Dive into the Johnny Lam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Wong

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

John A. Jansen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge