Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joice Ferreira is active.

Publication


Featured researches published by Joice Ferreira.


Nature | 2016

Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation

Jos Barlow; Gareth D. Lennox; Joice Ferreira; Erika Berenguer; Alexander C. Lees; Ralph Mac Nally; James R. Thomson; Silvio Frosini de Barros Ferraz; Julio Louzada; Victor Hugo Fonseca Oliveira; Luke Parry; Ricardo R. C. Solar; Ima Célia Guimarães Vieira; Luiz E. O. C. Aragão; Rodrigo Anzolin Begotti; Rodrigo Fagundes Braga; Thiago Moreira Cardoso; Raimundo Cosme de Oliveira; Carlos Souza; Nárgila G. Moura; Sâmia Nunes; João Victor Siqueira; Renata Pardini; Juliana M. Silveira; Fernando Z. Vaz-de-Mello; Ruan Carlo Stülpen Veiga; Adriano Venturieri; Toby A. Gardner

Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69–80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil’s Forest Code, resulted in a 39–54% loss of conservation value: 96–171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará’s strictly protected areas is equivalent to the loss of 92,000–139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems.


Science | 2014

Brazil's environmental leadership at risk

Joice Ferreira; Luiz E. O. C. Aragão; Jos Barlow; P. Barreto; Erika Berenguer; Mercedes M. C. Bustamante; Toby A. Gardner; Alexander C. Lees; André Lima; Julio Louzada; Renata Pardini; Luke Parry; Carlos A. Peres; Paulo Santos Pompeu; Marcelo Tabarelli; Jansen Zuanon

Mining and dams threaten protected areas Over the past two decades, Brazil has emerged as an environmental leader, playing a prominent role in international fora such as the United Nations (UN) Conferences on Sustainable Development. The country has earned praise for the expansion of its protected area (PA) network and reductions in Amazon deforestation. Yet these successes are being compromised by development pressures and shifts in legislation. We highlight concerns for the newly elected government regarding development of major infrastructure and natural resource extraction projects in PAs and indigenous lands (ILs).


Ecology Letters | 2015

How pervasive is biotic homogenization in human-modified tropical forest landscapes?

Ricardo R. C. Solar; Jos Barlow; Joice Ferreira; Erika Berenguer; Alexander C. Lees; Thomson; Julio Louzada; Márcia Motta Maués; Nárgila G. Moura; Victor Hugo Fonseca Oliveira; Chaul Jc; José H. Schoereder; Ima Célia Guimarães Vieira; Mac Nally R; Toby A. Gardner

Land-cover change and ecosystem degradation may lead to biotic homogenization, yet our understanding of this phenomenon over large spatial scales and different biotic groups remains weak. We used a multi-taxa dataset from 335 sites and 36 heterogeneous landscapes in the Brazilian Amazon to examine the potential for landscape-scale processes to modulate the cumulative effects of local disturbances. Biotic homogenization was high in production areas but much less in disturbed and regenerating forests, where high levels of among-site and among-landscape β-diversity appeared to attenuate species loss at larger scales. We found consistently high levels of β-diversity among landscapes for all land cover classes, providing support for landscape-scale divergence in species composition. Our findings support concerns that β-diversity has been underestimated as a driver of biodiversity change and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota.


Philosophical Transactions of the Royal Society B | 2013

A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network

Toby A. Gardner; Joice Ferreira; Jos Barlow; Alexander C. Lees; Luke Parry; Ima Célia Guimarães Vieira; Erika Berenguer; Ricardo Abramovay; Alexandre Aleixo; Christian Borges Andretti; Luiz E. O. C. Aragão; Ivanei S. Araujo; Williams Souza de Ávila; Richard D. Bardgett; Mateus Batistella; Rodrigo Anzolin Begotti; Troy Beldini; Driss Ezzine de Blas; Rodrigo Fagundes Braga; Danielle L. Braga; Janaína Gomes de Brito; Plínio Barbosa de Camargo; Fabiane Campos dos Santos; Vívian Campos de Oliveira; Amanda Cardoso Nunes Cordeiro; Thiago Moreira Cardoso; Déborah Reis de Carvalho; Sergio Castelani; Júlio Cézar Mário Chaul; Carlos Eduardo Pellegrino Cerri

Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far.


Global Change Biology | 2016

Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz E. O. C. Aragão; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Q. Chambers; Marcos Heil Costa; Thierry Fanin; Laerte Guimarães Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas C. Morton; Jean Pierre Henry Balbaud Ometto; Michael Palace; Carlos A. Peres; Divino Vicente Silvério; Susan E. Trumbore; Ima Célia Guimarães Vieira

Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.


Current Biology | 2015

Rapid tree carbon stock recovery in managed Amazonian forests

Ervan Rutishauser; Bruno Hérault; Christopher Baraloto; Lilian Blanc; Laurent Descroix; Eleneide Doff Sotta; Joice Ferreira; Milton Kanashiro; Lucas Mazzei; Marcus Vinicio Neves d’Oliveira; Luís Cláudio de Oliveira; Marielos Peña-Claros; Francis E. Putz; Ademir Roberto Ruschel; Ken Rodney; Anand Roopsind; Alexander Shenkin; Kátia Emídio da Silva; Cintia Rodrigues de Souza; Marisol Toledo; Edson Vidal; Thales A.P. West; Verginia Wortel; Plinio Sist

While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions.While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production [1] . Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity [2,3] . Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. [4] found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin [5] to assess the main drivers of time-to-recovery of post-logging tree carbon ( Table S1 ). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions.


Earth Interactions | 2008

Estimating Seasonal Changes in Volumetric Soil Water Content at Landscape Scales in a Savanna Ecosystem Using Two-Dimensional Resistivity Profiling

Diana C. Garcia-Montiel; Michael T. Coe; Meyr P. Cruz; Joice Ferreira; Euzebio M. da Silva; Eric A. Davidson

Abstract Water distributed in deep soil reservoirs is an important factor determining the ecosystem structure of water-limited environments, such as the seasonal tropical savannas of South America. In this study a two-dimensional (2D) geoelectrical profiling technique was employed to estimate seasonal dynamics of soil water content to 10-m depth along transects of 275 m in savanna vegetation during the period between 2002 and 2006. Methods were developed to convert resistivity values along these 2D resistivity profiles into volumetric water content (VWC) by soil depth. The 2D resistivity profiles revealed the following soil and aquifer structure characterizing the underground environment: 0–4 m of permanently unsaturated and seasonally droughty soil, less severely dry unsaturated soil at about 4–7 m, nearly permanently saturated soil between 7 and 10 m, mostly impermeable saprolite interspaced with fresh bedrock of parent material at about 10–30 m, and a region of highly conductive water-saturated materia...


Conservation Biology | 2014

Two hundred years of local avian extinctions in Eastern Amazonia

Nárgila G. Moura; Alexander C. Lees; Alexandre Aleixo; Jos Barlow; Sidnei de Melo Dantas; Joice Ferreira; Maria de Fátima Cunha Lima; Toby A. Gardner

Local, regional, and global extinctions caused by habitat loss, degradation, and fragmentation have been widely reported for the tropics. The patterns and drivers of this loss of species are now increasingly well known in Amazonia, but there remains a significant gap in understanding of long-term trends in species persistence and extinction in anthropogenic landscapes. Such a historical perspective is critical for understanding the status and trends of extant biodiversity as well as for identifying priorities to halt further losses. Using extensive historical data sets of specimen records and results of contemporary surveys, we searched for evidence of local extinctions of a terra firma rainforest avifauna over 200 years in a 2500 km(2) eastern Amazonian region around the Brazilian city of Belém. This region has the longest history of ornithological fieldwork in the entire Amazon basin and lies in the highly threatened Belém Centre of Endemism. We also compared our historically inferred extinction events with extensive data on species occurrences in a sample of catchments in a nearby municipality (Paragominas) that encompass a gradient of past forest loss. We found evidence for the possible extinction of 47 species (14% of the regional species pool) that were unreported from 1980 to 2013 (80% last recorded between 1900 and 1980). Seventeen species appear on the International Union for Conservation of Nature Red List, and many of these are large-bodied. The species lost from the region immediately around Belém are similar to those which are currently restricted to well-forested catchments in Paragominas. Although we anticipate the future rediscovery or recolonization of some species inferred to be extinct by our calculations, we also expect that there are likely to be additional local extinctions, not reported here, given the ongoing loss and degradation of remaining areas of native vegetation across eastern Amazonia.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Road networks predict human influence on Amazonian bird communities

Sadia E. Ahmed; Alexander C. Lees; Nárgila G. Moura; Toby A. Gardner; Jos Barlow; Joice Ferreira; Robert M. Ewers

Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called ‘roadless volume (RV)’ at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation.


Brazilian Journal of Botany | 2001

Crescimento inicial de Piptadenia gonoacantha (Leguminosae, Mimosoideae) sob inundação em diferentes níveis de luminosidade

Joice Ferreira; José Felipe Ribeiro; Carlos Eduardo Lazarini da Fonseca

This study focus on ecological aspects of flooding on five month old seedlings of Piptadenia gonoacantha, a Gallery forest species. Seedling growth rates were evaluated on three levels of sun light (100%, 70% and 40%) and two soil moisture conditions (field capacity and flooded). Flooding reduced aerial and root growth. There was no interaction between light intensity and flooding, except for foliar dry matter (60 days) and top/root ratio (20 days). Full sun light seedlings under flooding had 67% lower foliar dry matter production than shaded ones, after 60 days. Flooded seedlings in all three light levels, had hypertrophic lenticels on submerged stems, after 20 days. In additon, flooding induced root decomposition but no adventicious roots were observed. After 60 days of flooding, seedlings of P. gonoacantha presented 100 % survival and no significant injury on the top portion.

Collaboration


Dive into the Joice Ferreira's collaboration.

Top Co-Authors

Avatar

Toby A. Gardner

Stockholm Environment Institute

View shared research outputs
Top Co-Authors

Avatar

Jos Barlow

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilie Coudel

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Luiz E. O. C. Aragão

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nárgila G. Moura

Museu Paraense Emílio Goeldi

View shared research outputs
Top Co-Authors

Avatar

Lilian Blanc

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Researchain Logo
Decentralizing Knowledge