Joice Mathew
Indian Institute of Astrophysics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joice Mathew.
Journal of Astronomical Telescopes, Instruments, and Systems | 2016
Kaipacheri Nirmal; A. G. Sreejith; Joice Mathew; Mayuresh Sarpotdar; S. Ambily; Ajin Prakash; Margarita Safonova; Jayant Murthy
Abstract. We describe the development and implementation of a light-weight, fully autonomous 2-axis pointing and stabilization system designed for balloon-borne astronomical payloads. The system is developed using off-the-shelf components such as Arduino Uno controller, HMC 5883L magnetometer, MPU-9150 inertial measurement unit, and iWave GPS receiver unit. It is a compact and rugged system which can also be used to take images/video in a moving vehicle or in real photography. The system performance is evaluated from the ground, as well as in conditions simulated to imitate the actual flight by using a tethered launch.
Proceedings of SPIE | 2016
A. G. Sreejith; Joice Mathew; Mayuresh Sarpotdar; K. Nirmal; S. Ambily; Ajin Prakash; Margarita Safonova; Jayant Murthy
The ultraviolet (UV) window has been largely unexplored through balloons for astronomy. We discuss here the development of a compact near-UV spectrograph with fiber optics input for balloon flights. It is a modified Czerny-Turner system built using off-the-shelf components. The system is portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in the UV. It employs an image-intensified CMOS sensor, operating in photon counting mode, as the detector of choice. A lightweight pointing system developed for stable pointing to observe astronomical sources is also discussed, together with the methods to improve its accuracy, e.g. using the in-house build star sensor and others. Our primary scientific objectives include the observation of bright Solar System objects such as visible to eye comets, Moon and planets. Studies of planets can give us valuable information about the planetary aurorae, helping to model and compare atmospheres of other planets and the Earth. The other major objective is to look at the diffuse UV atmospheric emission features (airglow lines), and at column densities of trace gases. This UV window includes several lines important to atmospheric chemistry, e.g. SO2, O3, HCHO, BrO. The spectrograph enables simultaneous measurement of various trace gases, as well as provides better accuracy at higher altitudes compared to electromechanical trace gas measurement sondes. These lines contaminate most astronomical observations but are poorly characterized. Other objectives may include sprites in the atmosphere and meteor ashes from high altitude burn-outs. Our recent experiments and observations with high-altitude balloons are discussed.
arXiv: Instrumentation and Methods for Astrophysics | 2017
S. Ambily; Mayuresh Sarpotdar; Joice Mathew; A. G. Sreejith; K. Nirmal; Ajin Prakash; Margarita Safonova; Jayant Murthy
MCP-based detectors are widely used in the ultraviolet (UV) region due to their low noise levels, high sensitivity and good spatial and temporal resolution. We have developed a compact near-UV (NUV...
Experimental Astronomy | 2017
Mayuresh Sarpotdar; Joice Mathew; A. G. Sreejith; K. Nirmal; S. Ambily; Ajin Prakash; Margarita Safonova; Jayant Murthy
We have developed a low-cost off-the-shelf component star sensor (StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.
Proceedings of SPIE | 2016
Mayuresh Sarpotdar; Joice Mathew; Margarita Safonova; Jayant Murthy
For space-based astronomical observations, it is important to have a mechanism to capture the digital output from the standard detector for further on-board analysis and storage. We have developed a generic (application- wise) field-programmable gate array (FPGA) board to interface with an image sensor, a method to generate the clocks required to read the image data from the sensor, and a real-time image processor system (on-chip) which can be used for various image processing tasks. The FPGA board is applied as the image processor board in the Lunar Ultraviolet Cosmic Imager (LUCI) and a star sensor (StarSense) - instruments developed by our group. In this paper, we discuss the various design considerations for this board and its applications in the future balloon and possible space flights.
Astrophysics and Space Science | 2017
Joice Mathew; Ajin Prakash; Sarpotdar Mayuresh; A. G. Sreejith; K. Nirmal; S. Ambily; Margarita Safonova; Jayant Murthy; Noah Brosch
We present a design for a near-ultraviolet (NUV) imaging instrument which may be flown on a range of available platforms, including high-altitude balloons, nanosatellites, or space missions. Although all current UV space missions adopt a Ritchey-Chrétien telescope design, this requires aspheric optics, making the optical system complex, expensive and challenging for manufacturing and alignment. An all-spherical configuration is a cost-effective and simple solution. We have aimed for a small payload which may be launched by different platforms and we have designed a compact, light-weight payload which will withstand all launch loads. No other UV payloads have been previously reported with an all-spherical optical design for imaging in the NUV domain and a weight below 2 kg. Our main science goal is focused on bright UV sources not accessible by the more sensitive large space UV missions.Here we discuss various aspects of design and development of the complete instrument, the structural and finite-element analysis of the system performed to ensure that the payload withstands launch-load stresses and vibrations. We expect to fly this telescope—Lunar Ultraviolet Cosmic Imager (LUCI)—on a spacecraft to the Moon as part of the Indian entry into Google X-Prize competition. Observations from the Moon provide a unique opportunity to observe the sky from a stable platform far above the Earth’s atmosphere. However, we will explore other opportunities as well, and will fly this telescope on a high-altitude balloon later this year.
Proceedings of SPIE | 2016
Joice Mathew; Ajin Prakash; Mayuresh Sarpotdar; A. G. Sreejith; Margarita Safonova; Jayant Murthy
We have designed and developed a compact ultraviolet imaging payload to y on a range of possible platforms such as high altitude balloon experiments, cubesats, space missions, etc. The primary science goals are to study the bright UV sources (mag < 10) and also to look for transients in the Near UV (200 - 300 nm) domain. Our first choice is to place this instrument on a spacecraft going to the Moon as part of the Indian entry into Google lunar X-Prize competition. The major constraints for the instrument are, it should be lightweight (< 2Kg), compact (length < 50cm) and cost effective. The instrument is an 80 mm diameter Cassegrain telescope with a field of view of around half a degree designated for UV imaging. In this paper we will discuss about the various science cases that can be performed by having observations with the instrument on different platforms. We will also describe the design, development and the current state of implementation of the instrument. This includes opto-mechanical and electrical design of the instrument. We have adopted an all spherical optical design which would make the system less complex to realize and a cost effective solution compared to other telescope configuration. The structural design has been chosen in such a way that it will ensure that the instrument could withstand all the launch load vibrations. An FPGA based electronics board is used for the data acquisition, processing and CCD control. We will also brie y discuss about the hardware implementation of the detector interface and algorithms for the detector readout and data processing.
Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray | 2018
Ambily Suresh; Joice Mathew; Mayuresh Sarpotdar; Vinod K. Aggarval; S. Nagabhushanam; Sachin Jeeragal; Divya A. Rao; Nirmal Kaipachery; Binukumar G. Nair; Margarita Safonova; Jayant Murthy; Sreejith Aickara Gopinathan
The Pesit/IIA Observatory for the Night Sky(PIONS) is a near UV imaging telescope to be flown on a small satellite. The instrument is a 150mm RC telescope that covers a wavelength range of 180-280 nm. We are using an intensified CMOS detector with a solar blind photocathode, to be operated in photon counting mode. The telescope has a wide field of view of 3 degrees and an angular resolution of 13”. We plan to point the telescope to scan the sky continuously along the sun pointing axis to look for variable UV sources such as flare stars, AGNs, and other transient events. We can detect objects as faint as 21 magnitude and perform their photometric analysis. Since the aperture and the effective area of the telescope are comparatively small, it can be pointed to relatively brighter parts of the UV sky which were not accessible to larger mission due to detector limitations.
Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray | 2018
Joice Mathew; Binukumar G. Nair; Ajin Prakash; Mayuresh Sarpotdar; Ambily Suresh; K. Nirmal; Sreejith Aickara Gopinathan; Margarita Safonova; Jayant Murthy; Noah Brosch; S. Sriram; P. U. Kamath
The Lunar Ultraviolet Cosmic Imager (LUCI) is an innovative all-spherical mirrors telescope, proposed to fly as a scientific UV imaging payload on a lunar mission in collaboration with Indian Aerospace Company-TeamIndus, Axiom Research Labs Pvt. Ltd. Observations from the Moon provide a unique opportunity to observe the sky from a stable platform far above the Earths atmosphere. LUCI will observe at a fixed elevation angle and will detect stars in the near ultraviolet (200-320 nm) to a limiting magnitude of 12 AB, with a field of view of around 0.5 degrees. The primary science goal is to search for transient sources and flag them for further study. The instrument has been assembled in the class 1000 clean room at the M.G.K Menon Laboratory for Space Sciences. Here we will describe the optomechanical assembly procedures we have carried out during the optical alignment and integration of the payload. Opto-mechanical alignment of the instrument was carried out by using alignment telescope cum autocollimator (for coarse alignment) and ZYGO interferometer (fine alignment). We will also discuss the ground calibration tests performed on the assembled telescope. The results from the ground calibration activities will help in establishing the full calibration matrix of the instrument once operational.
Ground-based and Airborne Instrumentation for Astronomy VII | 2018
K. Nirmal; Sridharan Rengaswamy; Jayant Murthy; S. Sriram; Binukumar Gopalakrishnan; Margarita Safonova; Ambily Suresh; Joice Mathew; Mayuresh Sarpotdar
Spatial Heterodyne Spectroscopy (SHS) is a relatively novel interferometric technique similar to Fourier transform spectroscopy and shares design similarities with a Michelson Interferometer. An Imaging detector is used at the output of a SHS to record the spatially heterodyned interference pattern. The spectrum of the source is obtained by Fourier transforming the recorded interferogram. The merits of the SHS -its design, including the lack of moving parts, compactness, high throughput, high SNR and instantaneous spectral measurements - makes it suitable for space as well as ground observatories. The small bandwidth limitation of the SHS can be overcome by building it in tunable configuration (Tunable Spatial Heterodyne Spectrometer(TSHS)). In this paper, we describe the wavelength calibration of the tunable SHS using a Halogen lamp and Andor monochromator setup. We found a relation between the fringe frequency and the wavelength.