Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joke Hadermann is active.

Publication


Featured researches published by Joke Hadermann.


Angewandte Chemie | 2012

Structural Requirements in Lithium Cobalt Oxides for the Catalytic Oxidation of Water

Graeme Gardner; Yong Bok Go; David M. Robinson; Paul F. Smith; Joke Hadermann; Artem M. Abakumov; Martha Greenblatt; G. Charles Dismukes

The development of water oxidation catalysts (WOCs) to replace costly noble metals in commercial electrolyzers and solar fuel cells is an unmet need that is preventing the global development of hydrogen fuel technologies. Two of the main challenges in realizing catalytic water splitting are lowering the substantial overpotential that is required to achieve practical operating current densities in the O2-evolving halfreaction at the anode, and the use of earth-abundant elements for the fabrication of inexpensive electrodes that are free from noble metals. To meet these challenges, molecular catalysts that are based upon the cubic CaMn4Ox core within photosystem II in photosynthetic organisms, which is the gold standard of catalytic efficiency, have begun to appear. Among solid-state materials, several noble-metal oxides, which include IrO2 and RuO2, are already in use in industrial electrolyzers, but are not globally scalable. Aqueous solutions of cobalt phosphate form water-oxidation catalysts under electrolysis and photolysis that are suitable for the fabrication of noncrystalline electrode materials. Nanocrystalline spinel-phase metal oxides (AM2O4, M= transition metals) that are comprised of M4O4 cubical subunits and are active water oxidation catalysts have been developed. The catalytic activity of the spinel Co3O4 has been reported for Co3O4 nanorods that are incorporated into SBA-15 silica, as well as Co3O4 nanoparticles that are adsorbed onto Ni electrodes. NiCo2O4 spinel also oxidizes water when the nanoparticles are electrophoretically deposited onto a Ni electrode. Reports that examined the effect of lithium doping on the surface of Co3O4 electrodes in solutions of KOH attributed the higher evolution rate of O2 to better electrical conductivity. However, the oxidation of water by Co3O4 was strongly dependent on crystallite size and surface area and frequently necessitates high overpotentials and alkaline conditions to accelerate the rate of reaction. In contrast, we recently reported that the catalytically inert spinel LiMn2O4 gives spinel l-MnO2, which is an active water oxidation catalyst, upon topotactic delithiation. Thus, the importance of removing the A-site lithium for catalysis by the cubic Mn4O4 core of spinels was revealed. [11]


Acta Biomaterialia | 2015

Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation

Fei Zhang; Kim Vanmeensel; Maria Batuk; Joke Hadermann; Masanao Inokoshi; Bart Van Meerbeek; Ignace Naert; Jef Vleugels

Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr(4+), exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.1-0.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties.


Optics Express | 2014

Energy transfer in Eu 3+ doped scheelites: use as thermographic phosphor

Katrien W. Meert; Vladimir A. Morozov; Artem M. Abakumov; Joke Hadermann; Dirk Poelman; Philippe Smet

In this paper the luminescence of the scheelite-based CaGd₂(₁-x)Eu₂x(WO₄)₄ solid solutions is investigated as a function of the Eu content and temperature. All phosphors show intense red luminescence due to the ⁵D₀ - ⁷F₂ transition in Eu³⁺, along with other transitions from the ⁵D₁ and ⁵D₀ excited states. For high Eu³⁺ concentrations the intensity ratio of the emission originating from the ⁵D₁ and ⁵D₀ levels has a non-conventional temperature dependence, which could be explained by a phonon-assisted cross-relaxation process. It is demonstrated that this intensity ratio can be used as a measure of temperature with high spatial resolution, allowing the use of these scheelites as thermographic phosphor. The main disadvantage of many thermographic phosphors, a decreasing signal for increasing temperature, is absent.


Angewandte Chemie | 2013

Polar and Magnetic Mn2FeMO6 (M = Nb, Ta) with LiNbO3-type Structure - High Pressure Synthesis

Man-Rong Li; David Walker; Maria Retuerto; Tapati Sarkar; Joke Hadermann; Peter W. Stephens; M. Croft; Alexander Ignatov; Christoph P. Grams; J. Hemberger; I. Nowik; P. Shiv Halasyamani; T. Thao Tran; Swarnakamal Mukherjee; Tanusri Saha Dasgupta; Martha Greenblatt

Polar oxides are of much interest in materials science and engineering. Their symmetry-dependent properties such as ferroelectricity/multiferroics, piezoelectricity, pyroelectricity, and second-order harmonic generation (SHG) effect are important for technological applications. [1] However, polar crystal design and synthesis is challenging, because multiple effects, such as steric or dipole-dipole interactions, typically combine to form non-polar structures; so the number of known polar materials, especially polar magnetoelectric materials, is still severely restricted. [2] Therefore, it is necessary for the material science community to develop new strategies to create these materials.


Angewandte Chemie | 2015

Giant Magnetoresistance in the Half-Metallic Double-Perovskite Ferrimagnet Mn2FeReO6

Man-Rong Li; Maria Retuerto; Zheng Deng; Peter W. Stephens; M. Croft; Qingzhen Huang; Hui Wu; Xiaoyu Deng; Gabriel Kotliar; J. Sánchez-Benítez; Joke Hadermann; David Walker; Martha Greenblatt

The first transition-metal-only double perovskite compound, Mn(2+) 2 Fe(3+) Re(5+) O6 , with 17 unpaired d electrons displays ferrimagnetic ordering up to 520 K and a giant positive magnetoresistance of up to 220 % at 5 K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.


Journal of the American Chemical Society | 2011

Mn(I) in an Extended Oxide: The Synthesis and Characterization of La1–xCaxMnO2+δ (0.6 ≤ x ≤ 1)

Edward Dixon; Joke Hadermann; Silvia Ramos; Andrew L. Goodwin; Michael A. Hayward

Reduction of La(1-x)Ca(x)MnO(3) (0.6 ≤ x ≤ 1) perovskite phases with sodium hydride yields materials of composition La(1-x)Ca(x)MnO(2+δ). The calcium-rich phases (x = 0.9, 1) adopt (La(0.9)Ca(0.1))(0.5)Mn(0.5)O disordered rocksalt structures. However local structure analysis using reverse Monte Carlo refinement of models against pair distribution functions obtained from neutron total scattering data reveals lanthanum-rich La(1-x)Ca(x)MnO(2+δ) (x = 0.6, 0.67, 0.7) phases adopt disordered structures consisting of an intergrowth of sheets of MnO(6) octahedra and sheets of MnO(4) tetrahedra. X-ray absorption data confirm the presence of Mn(I) centers in La(1-x)Ca(x)MnO(2+δ) phases with x < 1. Low-temperature neutron diffraction data reveal La(1-x)Ca(x)MnO(2+δ) (x = 0.6, 0.67, 0.7) phases become antiferromagnetically ordered at low temperature.


Inorganic Chemistry | 2014

Cation Ordering and Flexibility of the BO42– Tetrahedra in Incommensurately Modulated CaEu2(BO4)4 (B = Mo, W) Scheelites

Artem M. Abakumov; Vladimir A. Morozov; Alexander A. Tsirlin; Johan Verbeeck; Joke Hadermann

The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)4 (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)4 adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(αβ0)00, a = 5.238 73(1)Å, b = 5.266 35(1) Å, c = 11.463 19(9) Å, γ = 91.1511(2)°, q = 0.56153(6)a* + 0.7708(9)b*, R(F) = 0.050, R(P) = 0.069], whereas tetragonal CaEu2(MoO4)4 is (3 + 2)-dimensionally modulated [superspace group I4₁/a(αβ0)00(-βα0)00, a = 5.238 672(7) Å, c = 11.548 43(2) Å, q1 = 0.55331(8)a* + 0.82068(9)b*, q2 = -0.82068(9)a* + 0.55331(8)b*, R(F) = 0.061, R(P) = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO4 structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO4(2-) and WO4(2-) tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.


Journal of Materials Chemistry | 2007

Synthesis and crystal structure of the Sr2Al1.07Mn0.93O5 brownmillerite

Joke Hadermann; Artem M. Abakumov; H. D'Hondt; Anna S. Kalyuzhnaya; Marina G. Rozova; M. Markina; M. G. Mikheev; N. Tristan; R. Klingeler; Bernd Büchner; Evgeny V. Antipov

A new brownmillerite-type compound Sr2Al1.07Mn0.93O5 was synthesized. The crystal structure was determined using electron diffraction and high resolution transmission electron microscopy and refined from X-ray powder diffraction data (space group Imma, a = 5.4358(1) A, b = 15.6230(4) A, c = 5.6075(1) A, RI = 0.036, RP = 0.023). The structure is characterized by a disordered distribution of the tetrahedral chains in L and R configuration and a partial occupation of the octahedral position by the Mn3+ and Al3+ cations. The relationships between the crystal structures of Sr2Al1.07Mn0.93O5 and its A2B′MnO5 analogues (A = Ca, Sr, B′ = Al, Ga) and the structural reasons for the different types of tetrahedral chain ordering in brownmillerites are discussed. The temperature dependences of the magnetic susceptibility and specific heat reveal that the compound is antiferromagnetically ordered below TN = 105 K.


Journal of the American Chemical Society | 2009

Topotactic Reduction As a Route to New Close-Packed Anion Deficient Perovskites: Structure and Magnetism of 4H-BaMnO2+x

Joke Hadermann; Artem M. Abakumov; Josephine J. Adkin; Michael A. Hayward

The anion-deficient perovskite 4H-BaMnO(2+x) has been obtained by a topotactic reduction, with LiH, of the hexagonal perovskite 4H-BaMnO(3-x). The crystal structure of 4H-BaMnO(2+x) was solved using electron diffraction and X-ray powder diffraction and further refined using neutron powder diffraction (S.G. Pnma, a = 10.375(2) A, b = 9.466(2) A, c = 11.276(3) A, at 373 K). The orthorhombic superstructure arises from the ordering of oxygen vacancies within a 4H (chch) stacking of close packed c-type BaO(2.5) and h-type BaO(1.5) layers. The ordering of the oxygen vacancies transforms the Mn(2)O(9) units of face-sharing MnO(6) octahedra into Mn(2)O(7) (two corner-sharing tetrahedra) and Mn(2)O(6) (two edge-sharing tetrahedra) groups. The Mn(2)O(7) and Mn(2)O(6) groups are linked by corner-sharing into a three-dimensional framework. The structures of the BaO(2.5) and BaO(1.5) layers are different from those observed previously in anion-deficient perovskites providing a new type of order pattern of oxygen atoms and vacancies in close packed structures. Magnetization measurements and neutron diffraction data reveal 4H-BaMnO(2+x) adopts an antiferromagnetically ordered state below T(N) approximately 350 K.


Solid State Sciences | 2002

Synthesis and investigation of novel Mn-based oxyfluoride Sr2Mn2O5–xF1+x

Maxim V. Lobanov; Artem M. Abakumov; Anna V. Sidorova; Marina G. Rozova; O.G. D'yachenko; Evgeny V. Antipov; Joke Hadermann; Gustaaf Van Tendeloo

A new oxyfluoride Sr 2Mn2O5–xF1+x was synthesized by low temperature fluorination of Sr 2Mn2O5 with XeF2 and studied using X-ray powder diffraction, electron diffraction and high resolution electron microscopy. The oxyfluoride has a tetragonal perovskite-like structure with cell parameters a = 3.8069(8) A, c = 3.989(2) A (S.G. P4/mmm). No additional superstructure or lattice distortions were detected by electron microscopy. The Mn oxidation state was evaluated using bond valence sum calculations as close to VMn =+ 3.5. The tetragonal distortion of the perovskite structure arises from the Jahn–Teller deformation of the Mn(O,F) 6 octahedra.  2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Collaboration


Dive into the Joke Hadermann's collaboration.

Top Co-Authors

Avatar

Artem M. Abakumov

Skolkovo Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge