Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jolene Carlson is active.

Publication


Featured researches published by Jolene Carlson.


Journal of Virology | 2015

African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge

Vivian O'Donnell; Lauren G. Holinka; Peter W. Krug; Douglas P. Gladue; Jolene Carlson; Brenton Sanford; Marialexia Alfano; Edward Kramer; Z. Lu; Jonathan Arzt; Bo Reese; C. Carrillo; Guillermo R. Risatti; Manuel V. Borca

ABSTRACT African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs. Disease control strategies have been hampered by the unavailability of vaccines against ASFV. Since its introduction in the Republic of Georgia, a highly virulent virus, ASFV Georgia 2007 (ASFV-G), has caused an epizootic that spread rapidly into Eastern European countries. Currently no vaccines are available or under development to control ASFV-G. In the past, genetically modified ASFVs harboring deletions of virulence-associated genes have proven attenuated in swine, inducing protective immunity against challenge with homologous parental viruses. Deletion of the gene 9GL (open reading frame [ORF] B119L) in highly virulent ASFV Malawi-Lil-20/1 produced an attenuated phenotype even when administered to pigs at 106 50% hemadsorption doses (HAD50). Here we report the construction of a genetically modified ASFV-G strain (ASFV-G-Δ9GLv) harboring a deletion of the 9GL (B119L) gene. Like Malawi-Lil-20/1-Δ9GL, ASFV-G-Δ9GL showed limited replication in primary swine macrophages. However, intramuscular inoculation of swine with 104 HAD50 of ASFV-G-Δ9GL produced a virulent phenotype that, unlike Malawi-Lil-20/1-Δ9GL, induced a lethal disease in swine like parental ASFV-G. Interestingly, lower doses (102 to 103 HAD50) of ASFV-G-Δ9GL did not induce a virulent phenotype in swine and when challenged protected pigs against disease. A dose of 102 HAD50 of ASFV-G-Δ9GLv conferred partial protection when pigs were challenged at either 21 or 28 days postinfection (dpi). An ASFV-G-Δ9GL HAD50 of 103 conferred partial and complete protection at 21 and 28 dpi, respectively. The information provided here adds to our recent report on the first attempts toward experimental vaccines against ASFV-G. IMPORTANCE The main problem for controlling ASF is the lack of vaccines. Studies on ASFV virulence lead to the production of genetically modified attenuated viruses that induce protection in pigs but only against homologous virus challenges. Here we produced a recombinant ASFV lacking virulence-associated gene 9GL in an attempt to produce a vaccine against virulent ASFV-G, a highly virulent virus isolate detected in the Caucasus region in 2007 and now spreading though the Caucasus region and Eastern Europe. Deletion of 9GL, unlike with other ASFV isolates, did not attenuate completely ASFV-G. However, when delivered once at low dosages, recombinant ASFV-G-Δ9GL induces protection in swine against parental ASFV-G. The protection against ASFV-G is highly effective after 28 days postvaccination, whereas at 21 days postvaccination, animals survived the lethal challenge but showed signs of ASF. Here we report the design and development of an experimental vaccine that induces protection against virulent ASFV-G.


Viruses | 2017

Classical Swine Fever—An Updated Review

Sandra Blome; Christoph Staubach; Julia Henke; Jolene Carlson; Martin Beer

Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.


Journal of Virology | 2017

Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge.

Vivian O'Donnell; Guillermo R. Risatti; Lauren G. Holinka; Peter W. Krug; Jolene Carlson; Lauro Velazquez-Salinas; Paul Azzinaro; Douglas P. Gladue; Manuel V. Borca

ABSTRACT African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Successful experimental vaccines have been derived from naturally occurring, cell culture-adapted, or genetically modified live attenuated ASFV. Recombinant viruses harboring engineered deletions of specific virulence-associated genes induce solid protection against challenge with parental viruses. Deletion of the 9GL (B119L) gene in the highly virulent ASFV isolates Malawi Lil-20/1 (Mal) and Pretoriuskop/96/4 (Δ9GL viruses) resulted in complete protection when challenged with parental isolates. When similar deletions were created within the ASFV Georgia 2007 (ASFV-G) genome, attenuation was achieved but the protective and lethal doses were too similar. To enhance attenuation of ASFV-G, we deleted another gene, UK (DP96R), which was previously shown to be involved in attenuation of the ASFV E70 isolate. Here, we report the construction of a double-gene-deletion recombinant virus, ASFV-G-Δ9GL/ΔUK. When administered intramuscularly (i.m.) to swine, there was no induction of disease, even at high doses (106 HAD50). Importantly, animals infected with 104 50% hemadsorbing doses (HAD50) of ASFV-G-Δ9GL/ΔUK were protected as early as 14 days postinoculation when challenged with ASFV-G. The presence of protection correlates with the appearance of serum anti-ASFV antibodies, but not with virus-specific circulating ASFV-specific gamma interferon (IFN-γ)-producing cells. ASFV-G-Δ9GL/ΔUK is the first rationally designed experimental ASFV vaccine that protects against the highly virulent ASFV Georgia 2007 isolate as early as 2 weeks postvaccination. IMPORTANCE Currently, there is no commercially available vaccine against African swine fever. Outbreaks of the disease are devastating to the swine industry and are caused by circulating strains of African swine fever virus. Here, we report a putative vaccine derived from a currently circulating strain but containing two deletions in two separate areas of the virus, allowing increased safety. Using this genetically modified virus, we were able to vaccinate swine and protect them from developing ASF. We were able to achieve protection from disease as early as 2 weeks after vaccination, even when the pigs were exposed to a higher than normal concentration of ASFV.


Viruses | 2016

Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

Jolene Carlson; Vivian O’Donnell; Marialexia Alfano; Lauro Velázquez Salinas; Lauren G. Holinka; Peter W. Krug; Douglas P. Gladue; Stephen Higgs; Manuel V. Borca

African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.


Virology | 2014

Development of an improved live attenuated antigenic marker CSF vaccine strain candidate with an increased genetic stability

Lauren G. Holinka; I. Fernandez-Sainz; Brenton Sanford; Vivian O’Donnell; Douglas P. Gladue; Jolene Carlson; Z. Lu; Guillermo R. Risatti; Manuel V. Borca

Controlling classical swine fever (CSF) involves vaccination in endemic regions and preemptive slaughter of infected swine herds during epidemics. Live attenuated marker vaccines that confer effective protection against the disease and allow differentiation between infected and vaccinated animals (DIVA) could impact CSF control policies. Previously, we reported the development of FlagT4 virus (FlagT4v), a rationally designed live attenuated marker vaccine. During its vaccine assessment, FlagT4v reverted to a virulent virus during successive passages in piglets. Sequence analysis revealed deletions and substitutions almost exclusively in the areas of E1 and E2. To improve genetic stability of FlagT4v, we introduced changes in the codon usage in those areas. The newly developed virus, FlagT4Gv, was shown to retain the attenuated phenotype after successive passages in piglets. As observed with FlagT4v, the newly developed FlagT4Gv conferred effective protection against challenge with virulent CSFV at early (7 days) and at late (28 days) times post-vaccination.


Virology | 2016

Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease

Lauro Velazquez-Salinas; Guillermo R. Risatti; Lauren G. Holinka; Vivian O’Donnell; Jolene Carlson; Marialexia Alfano; Luis L. Rodriguez; C. Carrillo; Douglas P. Gladue; Manuel V. Borca

Controlling classical swine fever (CSF) mainly involves vaccination with live attenuated vaccines (LAV). Experimental CSFV LAVs has been lately developed through reverse genetics using several different approaches. Here we present that codon de-optimization in the major CSFV structural glycoprotein E2 coding region, causes virus attenuation in swine. Four different mutated constructs (pCSFm1-pCSFm4) were designed using various mutational approaches based on the genetic background of the highly virulent strain Brescia (BICv). Three of these constructs produced infectious viruses (CSFm2v, CSFm3v, and CSFm4v). Animals infected with CSFm2v presented a reduced and extended viremia but did not display any CSF-related clinical signs. Animals that were infected with CSFm2v were protected against challenge with virulent parental BICv. This is the first report describing the development of an attenuated CSFV experimental vaccine by codon usage de-optimization, and one of the few examples of virus attenuation using this methodology that is assessed in a natural host.


Virology | 2014

Interaction of structural core protein of classical swine fever virus with endoplasmic reticulum-associated degradation pathway protein OS9

Douglas P. Gladue; Vivian O’Donnell; I. Fernandez-Sainz; P. Fletcher; R. Baker-Branstetter; Lauren G. Holinka; Brenton Sanford; Jolene Carlson; Z. Lu; Manuel V. Borca

Classical swine fever virus (CSFV) Core protein is involved in virus RNA protection, transcription regulation and virus virulence. To discover additional Core protein functions a yeast two-hybrid system was used to identify host proteins that interact with Core. Among the identified host proteins, the osteosarcoma amplified 9 protein (OS9) was further studied. Using alanine scanning mutagenesis, the OS9 binding site in the CSFV Core protein was identified, between Core residues (90)IAIM(93), near a putative cleavage site. Truncated versions of Core were used to show that OS9 binds a polypeptide representing the 12 C-terminal Core residues. Cells transfected with a double-fluorescent labeled Core construct demonstrated that co-localization of OS9 and Core occurred only on unprocessed forms of Core protein. A recombinant CSFV containing Core protein where residues (90)IAIM(93) were substituted by alanines showed no altered virulence in swine, but a significant decreased ability to replicate in cell cultures.


Scientific Reports | 2018

Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype

Laura Zani; Jan Hendrik Forth; Leonie Forth; Imbi Nurmoja; Simone Leidenberger; Julia Henke; Jolene Carlson; Christiane Breidenstein; Arvo Viltrop; Dirk Höper; Carola Sauter-Louis; Martin Beer; Sandra Blome

African swine fever (ASF) was introduced into the Eastern European Union in 2014 and led to considerable mortality among wild boar. In contrast, unexpected high antibody prevalence was reported in hunted wild boar in north-eastern Estonia. One of the causative virus strains was recently characterized. While it still showed rather high virulence in the majority of experimentally infected animals, one animal survived and recovered completely. Here, we report on the follow-up characterization of the isolate obtained from the survivor in the acute phase of infection. As a first step, three in vivo experiments were performed with different types of pigs: twelve minipigs (trial A), five domestic pigs (trial B), and five wild boar (trial C) were inoculated. 75% of the minipigs and all domestic pigs recovered after an acute course of disease. However, all wild boar succumbed to infection within 17 days. Representative samples were sequenced using NGS-technologies, and whole-genomes were compared to ASFV “Georgia 2007/1”. The alignments indicated a deletion of 14560 base pairs at the 5’ end, and genome reorganization by duplication. The characteristic deletion was confirmed in all trial samples and local field samples. In conclusion, an ASFV variant was found in Estonia that showed reduced virulence.


PLOS ONE | 2017

Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G

Lauren G. Holinka; Vivian O'Donnell; Guillermo R. Risatti; Paul Azzinaro; Jonathan Arzt; Carolina Stenfeldt; Lauro Velazquez-Salinas; Jolene Carlson; Douglas P. Gladue; Manuel V. Borca

Prophylactic vaccination using live attenuated classical swine fever (CSF) vaccines has been a very effective method to control the disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccination although the mechanisms mediating the protection are poorly characterized. Here we present the events occurring after the administration of our in-house developed live attenuated marker vaccine, FlagT4Gv. We previously reported that FlagT4Gv intramuscular (IM) administered conferred effective protection against intranasal challenge with virulent CSFV (BICv) as early as 7 days post-vaccination. Here we report that FlagT4Gv is able to induce protection against disease as early as three days post-vaccination. Immunohistochemical testing of tissues from FlagT4Gv-inoculated animals showed that tonsils were colonized by the vaccine virus by day 3 post-inoculation. There was a complete absence of BICv in tonsils of FlagT4Gv-inoculated animals which had been intranasal (IN) challenged with BICv 3 days after FlagT4Gv infection, confirming that FlagT4Gv inoculation confers sterile immunity. Analysis of systemic levels of 19 different cytokines in vaccinated animals demonstrated an increase of IFN-α three days after FlagT4Gv inoculation compared with mock infected controls.


Vaccine | 2018

Protection against transplacental transmission of moderately virulent classical swine fever virus using live marker vaccine “CP7_E2alf”

Julia Henke; Jolene Carlson; Laura Zani; Simone Leidenberger; Theresa Schwaiger; Kore Schlottau; Jens Peter Teifke; Charlotte Schröder; Martin Beer; Sandra Blome

Collaboration


Dive into the Jolene Carlson's collaboration.

Top Co-Authors

Avatar

Douglas P. Gladue

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Lauren G. Holinka

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Manuel V. Borca

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Guillermo R. Risatti

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Sandra Blome

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Vivian O’Donnell

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Martin Beer

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar

Brenton Sanford

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Lauro Velazquez-Salinas

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Marialexia Alfano

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge