Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joline Dalton is active.

Publication


Featured researches published by Joline Dalton.


Neurology | 2003

Myotonic dystrophy type 2 Molecular, diagnostic and clinical spectrum

John W. Day; Kenneth Ricker; J. F. Jacobsen; L. J. Rasmussen; Katherine A. Dick; Wolfram Kress; C. Schneider; M. C. Koch; G. J. Beilman; Andrew R. Harrison; Joline Dalton; Laura P.W. Ranum

Background: Myotonic dystrophy types 1 (DM1) and 2 (DM2/proximal myotonic myopathy PROMM) are dominantly inherited disorders with unusual multisystemic clinical features. The authors have characterized the clinical and molecular features of DM2/PROMM, which is caused by a CCTG repeat expansion in intron 1 of the zinc finger protein 9 (ZNF9) gene. Methods: Three-hundred and seventy-nine individuals from 133 DM2/PROMM families were evaluated genetically, and in 234 individuals clinical and molecular features were compared. Results: Among affected individuals 90% had electrical myotonia, 82% weakness, 61% cataracts, 23% diabetes, and 19% cardiac involvement. Because of the repeat tract’s unprecedented size (mean ∼5,000 CCTGs) and somatic instability, expansions were detectable by Southern analysis in only 80% of known carriers. The authors developed a repeat assay that increased the molecular detection rate to 99%. Only 30% of the positive samples had single sizeable expansions by Southern analysis, and 70% showed multiple bands or smears. Among the 101 individuals with single expansions, repeat size did not correlate with age at disease onset. Affected offspring had markedly shorter expansions than their affected parents, with a mean size difference of −17 kb (−4,250 CCTGs). Conclusions: DM2 is present in a large number of families of northern European ancestry. Clinically, DM2 resembles adult-onset DM1, with myotonia, muscular dystrophy, cataracts, diabetes, testicular failure, hypogammaglobulinemia, and cardiac conduction defects. An important distinction is the lack of a congenital form of DM2. The clinical and molecular parallels between DM1 and DM2 indicate that the multisystemic features common to both diseases are caused by CUG or CCUG expansions expressed at the RNA level.


Nature Genetics | 2006

Spectrin Mutations Cause Spinocerebellar Ataxia Type 5

Yoshio Ikeda; Katherine A. Dick; Marcy R Weatherspoon; Dan Gincel; Karen R. Armbrust; Joline Dalton; Giovanni Stevanin; Alexandra Durr; Christine Zühlke; Katrin Bürk; H. Brent Clark; Alexis Brice; Jeffrey D. Rothstein; Lawrence J. Schut; John W. Day; Laura P.W. Ranum

We have discovered that β-III spectrin (SPTBN2) mutations cause spinocerebellar ataxia type 5 (SCA5) in an 11-generation American kindred descended from President Lincolns grandparents and two additional families. Two families have separate in-frame deletions of 39 and 15 bp, and a third family has a mutation in the actin/ARP1 binding region. β-III spectrin is highly expressed in Purkinje cells and has been shown to stabilize the glutamate transporter EAAT4 at the surface of the plasma membrane. We found marked differences in EAAT4 and GluRδ2 by protein blot and cell fractionation in SCA5 autopsy tissue. Cell culture studies demonstrate that wild-type but not mutant β-III spectrin stabilizes EAAT4 at the plasma membrane. Spectrin mutations are a previously unknown cause of ataxia and neurodegenerative disease that affect membrane proteins involved in glutamate signaling.


Human Mutation | 2009

Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort

Kevin M. Flanigan; Diane M. Dunn; Andrew von Niederhausern; Payam Soltanzadeh; Eduard Gappmaier; Michael T. Howard; Jacinda Sampson; Cheryl Wall; Wendy M. King; Alan Pestronk; Julaine Florence; Anne M. Connolly; Katherine D. Mathews; Carrie M. Stephan; Karla S. Laubenthal; Brenda Wong; P. Morehart; Amy Meyer; Richard S. Finkel; Carsten G. Bönnemann; Livija Medne; John W. Day; Joline Dalton; Marcia Margolis; Veronica J. Hinton; Robert B. Weiss

Mutations in the DMD gene, encoding the dystrophin protein, are responsible for the dystrophinopathies Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), and X‐linked Dilated Cardiomyopathy (XLDC). Mutation analysis has traditionally been challenging, due to the large gene size (79 exons over 2.2 Mb of genomic DNA). We report a very large aggregate data set comprised of DMD mutations detected in samples from patients enrolled in the United Dystrophinopathy Project, a multicenter research consortium, and in referral samples submitted for mutation analysis with a diagnosis of dystrophinopathy. We report 1,111 mutations in the DMD gene, including 891 mutations with associated phenotypes. These results encompass 506 point mutations (including 294 nonsense mutations) and significantly expand the number of mutations associated with the dystrophinopathies, highlighting the utility of modern diagnostic techniques. Our data supports the uniform hypermutability of CGA>TGA mutations, establishes the frequency of polymorphic muscle (Dp427m) protein isoforms and reveals unique genomic haplotypes associated with “private” mutations. We note that 60% of these patients would be predicted to benefit from skipping of a single DMD exon using antisense oligonucleotide therapy, and 62% would be predicted to benefit from an inclusive multiexonskipping approach directed toward exons 45 through 55. Hum Mutat 30:1657–1666, 2009.


Journal of Medical Genetics | 2006

Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation

Michelle Trudeau; Joline Dalton; John W. Day; Laura P.W. Ranum; Miriam H. Meisler

Background: The SCN8A gene on chromosome 12q13 encodes the voltage gated sodium channel Nav1.6, which is widely expressed in neurons of the CNS and PNS. Mutations in the mouse ortholog of SCN8A result in ataxia and other movement disorders. Methods: We screened the 26 coding exons of SCN8A in 151 patients with inherited or sporadic ataxia. Results: A 2 bp deletion in exon 24 was identified in a 9 year old boy with mental retardation, pancerebellar atrophy, and ataxia. This mutation, Pro1719ArgfsX6, introduces a translation termination codon into the pore loop of domain 4, resulting in removal of the C-terminal cytoplasmic domain and predicted loss of channel function. Three additional heterozygotes in the family exhibit milder cognitive and behavioural deficits including attention deficit hyperactivity disorder (ADHD). No additional occurrences of this mutation were observed in 625 unrelated DNA samples (1250 chromosomes). Conclusions: The phenotypes of the heterozygous individuals suggest that mutations in SCN8A may result in motor and cognitive deficits of variable expressivity, but the study was limited by lack of segregation in the small pedigree and incomplete information about family members. Identification of additional families will be required to confirm the contribution of the SCN8A mutation to the clinical features in ataxia, cognition and behaviour disorders.


American Journal of Human Genetics | 2003

Myotonic Dystrophy Type 2: Human Founder Haplotype and Evolutionary Conservation of the Repeat Tract

Christina L. Liquori; Yoshio Ikeda; Marcy R Weatherspoon; Kenneth Ricker; Benedikt Schoser; Joline Dalton; John W. Day; Laura P.W. Ranum

Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, can be caused by a mutation on either chromosome 19 (DM1) or 3 (DM2). In 2001, we demonstrated that DM2 is caused by a CCTG expansion in intron 1 of the zinc finger protein 9 (ZNF9) gene. To investigate the ancestral origins of the DM2 expansion, we compared haplotypes for 71 families with genetically confirmed DM2, using 19 short tandem repeat markers that we developed that flank the repeat tract. All of the families are white, with the majority of Northern European/German descent and a single family from Afghanistan. Several conserved haplotypes spanning >700 kb appear to converge into a single haplotype near the repeat tract. The common interval that is shared by all families with DM2 immediately flanks the repeat, extending up to 216 kb telomeric and 119 kb centromeric of the CCTG expansion. The DM2 repeat tract contains the complex repeat motif (TG)(n)(TCTG)(n)(CCTG)(n). The CCTG portion of the repeat tract is interrupted on normal alleles, but, as in other expansion disorders, these interruptions are lost on affected alleles. We examined haplotypes of 228 control chromosomes and identified a potential premutation allele with an uninterrupted (CCTG)(20) on a haplotype that was identical to the most common affected haplotype. Our data suggest that the predominant Northern European ancestry of families with DM2 resulted from a common founder and that the loss of interruptions within the CCTG portion of the repeat tract may predispose alleles to further expansion. To gain insight into possible function of the repeat tract, we looked for evolutionary conservation. The complex repeat motif and flanking sequences within intron 1 are conserved among human, chimpanzee, gorilla, mouse, and rat, suggesting a conserved biological function.


Neuromuscular Disorders | 2013

Motor and cognitive assessment of infants and young boys with Duchenne Muscular Dystrophy: results from the Muscular Dystrophy Association DMD Clinical Research Network

Anne M. Connolly; Julaine Florence; Mary Michaeleen Cradock; Elizabeth C. Malkus; Jeanine Schierbecker; Catherine Siener; Charlie Wulf; Pallavi Anand; Paul T. Golumbek; Craig M. Zaidman; J. Philip Miller; Linda Lowes; Lindsay Alfano; Laurence Viollet-Callendret; Kevin M. Flanigan; Craig M. McDonald; E. Goude; Linda Johnson; Alina Nicorici; Peter I. Karachunski; John W. Day; Joline Dalton; Janey M. Farber; Karen K. Buser; Basil T. Darras; Peter B. Kang; Susan Riley; Elizabeth Shriber; Rebecca Parad; Kate Bushby

Therapeutic trials in Duchenne Muscular Dystrophy (DMD) exclude young boys because traditional outcome measures rely on cooperation. The Bayley III Scales of Infant and Toddler Development (Bayley III) have been validated in developing children and those with developmental disorders but have not been studied in DMD. Expanded Hammersmith Functional Motor Scale (HFMSE) and North Star Ambulatory Assessment (NSAA) may also be useful in this young DMD population. Clinical evaluators from the MDA-DMD Clinical Research Network were trained in these assessment tools. Infants and boys with DMD (n = 24; 1.9 ± 0.7 years) were assessed. The mean Bayley III motor composite score was low (82.8 ± 8; p ≤ .0001) (normal = 100 ± 15). Mean gross motor and fine motor function scaled scores were low (both p ≤ .0001). The mean cognitive comprehensive (p=.0002), receptive language (p ≤ .0001), and expressive language (p = .0001) were also low compared to normal children. Age was negatively associated with Bayley III gross motor (r = -0.44; p = .02) but not with fine motor, cognitive, or language scores. HFMSE (n=23) showed a mean score of 31 ± 13. NSAA (n = 18 boys; 2.2 ± 0.4 years) showed a mean score of 12 ± 5. Outcome assessments of young boys with DMD are feasible and in this multicenter study were best demonstrated using the Bayley III.


Cell Reports | 2015

MBNL Sequestration by Toxic RNAs and RNA Misprocessing in the Myotonic Dystrophy Brain

Marianne Goodwin; Apoorva Mohan; Ranjan Batra; Kuang Yung Lee; Konstantinos Charizanis; Francisco José Fernández Gómez; Sabiha Eddarkaoui; Nicolas Sergeant; Luc Buée; Takashi Kimura; H. Brent Clark; Joline Dalton; Kenji Takamura; Sebastien M. Weyn-Vanhentenryck; Chaolin Zhang; Tammy Reid; Laura P.W. Ranum; John W. Day; Maurice S. Swanson

For some neurological disorders, disease is primarily RNA mediated due to expression of non-coding microsatellite expansion RNAs (RNA(exp)). Toxicity is thought to result from enhanced binding of proteins to these expansions and depletion from their normal cellular targets. However, experimental evidence for this sequestration model is lacking. Here, we use HITS-CLIP and pre-mRNA processing analysis of human control versus myotonic dystrophy (DM) brains to provide compelling evidence for this RNA toxicity model. MBNL2 binds directly to DM repeat expansions in the brain, resulting in depletion from its normal RNA targets with downstream effects on alternative splicing and polyadenylation. Similar RNA processing defects were detected in Mbnl compound-knockout mice, highlighted by dysregulation of Mapt splicing and fetal tau isoform expression in adults. These results demonstrate that MBNL proteins are directly sequestered by RNA(exp) in the DM brain and introduce a powerful experimental tool to evaluate RNA-mediated toxicity in other expansion diseases.


Neurology | 2013

A focal domain of extreme demethylation within D4Z4 in FSHD2

Lynn M. Hartweck; Lindsey J. Anderson; Richard J.L.F. Lemmers; Abhijit Dandapat; Erik A. Toso; Joline Dalton; Rabi Tawil; John W. Day; Silvère M. van der Maarel; Michael Kyba

Objective: Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disease with an unclear genetic mechanism. Most patients have a contraction of the D4Z4 macrosatellite repeat array at 4qter, which is thought to cause partial demethylation (FSHD1) of the contracted allele. Demethylation has been surveyed at 3 restriction enzyme sites in the first repeat and only a single site across the entire array, and current models postulate that a generalized D4Z4 chromatin alteration causes FSHD. The background of normal alleles has confounded the study of epigenetic alterations; however, rare patients (FSHD2) have a form of the disease in which demethylation is global, i.e., on all D4Z4 elements throughout the genome. Our objective was to take advantage of the global nature of FSHD2 to identify where disease-relevant methylation changes occur within D4Z4. Methods: Using bisulfite sequencing of DNA from blood and myoblast cells, methylation levels at 74 CpG sites across 3 disparate regions within D4Z4 were measured in FSHD2 patients and controls. Results: We found that rates of demethylation caused by FSHD2 are not consistent across D4Z4. We identified a focal region of extreme demethylation within a 5′ domain, which we named DR1. Other D4Z4 regions, including the DUX4 ORF, were hypomethylated but to a much lesser extent. Conclusions: These data challenge the simple view that FSHD is caused by a broad “opening” of D4Z4 and lead us to postulate that the region of focal demethylation is the site of action of the key D4Z4 chromatin regulatory factors that go awry in FSHD.


Neuromuscular Disorders | 2012

Cerebral and muscle MRI abnormalities in myotonic dystrophy

Daniel T. Franc; Ryan L. Muetzel; Paul R. Robinson; Craig P. Rodriguez; Joline Dalton; Cameron E. Naughton; Bryon A. Mueller; Jeffrey R. Wozniak; Kelvin O. Lim; John W. Day

Pathophysiological mechanisms underlying the clinically devastating CNS features of myotonic dystrophy (DM) remain more enigmatic and controversial than do the muscle abnormalities of this common form of muscular dystrophy. To better define CNS and cranial muscle changes in DM, we used quantitative volumetric and diffusion tensor MRI methods to measure cerebral and masticatory muscle differences between controls (n=5) and adults with either congenital (n=5) or adult onset (n=5) myotonic dystrophy type 1 and myotonic dystrophy type 2 (n=5). Muscle volumes were diminished in DM1 and strongly correlated with reduced white matter integrity and gray matter volume. Moreover, correlation of reduced fractional anisotropy (white matter integrity) and gray matter volume in both DM1 and DM2 suggests that these abnormalities may share a common underlying pathophysiological mechanism. Further quantitative temporal and spatial characterization of these features will help delineate developmental and progressive neurological components of DM, and help determine the causative molecular and cellular mechanisms.


Cytogenetic and Genome Research | 2003

Molecular genetics of spinocerebellar ataxia type 8 (SCA8).

A.K. Mosemiller; Joline Dalton; John W. Day; Laura P.W. Ranum

We previously reported that a transcribed but untranslated CTG expansion causes a novel form of ataxia, spinocerebellar ataxia type 8 (SCA8) (Koob et al., 1999). SCA8 was the first example of a dominant spinocerebellar ataxia that is not caused by the expansion of a CAG repeat translated into a polyglutamine tract. This slowly progressive form of ataxia is characterized by dramatic repeat instability and a high degree of reduced penetrance. The clinical and genetic features of the disease are discussed below.

Collaboration


Dive into the Joline Dalton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin M. Flanigan

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne M. Connolly

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alina Nicorici

University of California

View shared research outputs
Top Co-Authors

Avatar

Basil T. Darras

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Catherine Siener

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Charlie Wulf

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge