Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon A. Weidanz is active.

Publication


Featured researches published by Jon A. Weidanz.


Journal of Proteome Research | 2008

Identification of breast cancer peptide epitopes presented by HLA-A*0201

Oriana Hawkins; Rodney S. VanGundy; Annette Eckerd; Wilfried Bardet; Rico Buchli; Jon A. Weidanz; William H. Hildebrand

Cellular immune mechanisms detect and destroy cancerous and infected cells via the human leukocyte antigen (HLA) class I molecules that present peptides of intracellular origin on the surface of all nucleated cells. The identification of novel, tumor-specific epitopes is a critical step in the development of immunotherapeutics for breast cancer. To directly identify peptide epitopes unique to cancerous cells, secreted human class I HLA molecules (sHLA) were constructed by deletion of the transmembrane and cytoplasmic domain of HLA A*0201. The resulting sHLA-A*0201 was transferred and expressed in breast cancer cell lines MCF-7, MDA-MB-231, and BT-20 as well as in the immortal, nontumorigenic cell line MCF10A. Stable transfectants were seeded into bioreactors for production of > 25 mg of sHLA-A*0201. Peptides eluted from affinity purified sHLA were analyzed by mass spectroscopy. Comparative analysis of HLA-A*0201 peptides revealed 5 previously uncharacterized epitopes uniquely presented on breast cancer cells. These peptides were derived from intracellular proteins with either well-defined or putative roles in breast cancer development and progression: Cyclin Dependent Kinase 2 (Cdk2), Ornithine Decarboxylase (ODC1), Kinetochore Associated 2 (KNTC2 or HEC1), Macrophage Migration Inhibitory Factor (MIF), and Exosome Component 6 (EXOSC6). Cellular recognition of the MIF, KNTC2, EXOSC6, and Cdk2 peptides by circulating CD8+ cells was demonstrated by tetramer staining and IFN-gamma ELISPOT. The identification and characterization of peptides unique to the class I of breast cancer cells provide putative targets for the development of immune diagnostic tools and therapeutics.


Journal of Immunology | 2010

Single-Chain HLA-A2 MHC Trimers That Incorporate an Immundominant Peptide Elicit Protective T Cell Immunity against Lethal West Nile Virus Infection

Sojung Kim; Lijin Li; Curtis McMurtrey; William H. Hildebrand; Jon A. Weidanz; William E. Gillanders; Michael S. Diamond; Ted H. Hansen

The generation of a robust CD8+ T cell response is an ongoing challenge for the development of DNA vaccines. One problem encountered with classical DNA plasmid immunization is that peptides produced are noncovalently and transiently associated with MHC class I molecules and thus may not durably stimulate CD8+ T cell responses. To address this and enhance the expression and presentation of the antigenic peptide/MHC complexes, we generated single-chain trimers (SCTs) composed of a single polypeptide chain with a linear composition of antigenic peptide, β2-microglobulin, and H chain connected by flexible linkers. In this study, we test whether the preassembled nature of the SCT makes them effective for eliciting protective CD8+ T cell responses against pathogens. A DNA plasmid was constructed encoding an SCT incorporating the human MHC class I molecule HLA-A2 and the immunodominant peptide SVG9 derived from the envelope protein of West Nile virus (WNV). HLA-A2 transgenic mice vaccinated with the DNA encoding the SVG9/HLA-A2 SCT generated a robust epitope-specific CD8+ T cell response and showed enhanced survival rate and lower viral burden in the brain after lethal WNV challenge. Inclusion of a CD4+ Th cell epitope within the SCT did not increase the frequency of SVG9-specific CD8+ T cells, but did enhance protection against WNV challenge. Overall, these findings demonstrate that the SCT platform can induce protective CD8+ T cell responses against lethal virus infection and may be paired with immunogens that elicit robust neutralizing Ab responses to generate vaccines that optimally activate all facets of adaptive immunity.


Journal of Immunology | 2006

Levels of Specific Peptide-HLA Class I Complex Predicts Tumor Cell Susceptibility to CTL Killing

Jon A. Weidanz; Tiffany Nguyen; Tito Woodburn; Francisca Neethling; Maurizio Chiriva-Internati; William H. Hildebrand; Joseph Lustgarten

Recognition of tumor-associated Ags (TAAs) on tumor cells by CTLs and the subsequent tumor cell death are assumed to be dependent on TAA protein expression and to correlate directly with the level of peptide displayed in the binding site of the HLA class I molecule. In this study we evaluated whether the levels of Her-2/neu protein expression on human tumor cell lines directly correlate with HLA-A*0201/Her2/neu peptide presentation and CTL recognition. We developed a TCR mimic (TCRm) mAb designated 1B8 that specifically recognizes the HLA-A2.1/Her2/neu peptide (369–377) (Her2(369)-A2) complex. TCRm mAb staining intensity varied for the five human tumor cell lines analyzed, suggesting quantitative differences in levels of the Her2(369)-A2 complex on these cells. Analysis of tumor cell lines pretreated with IFN-γ and TNF-α for Her2/neu protein and HLA-A2 molecule expression did not reveal a direct correlation between the levels of Her2/neu Ag, HLA-A2 molecule, and Her2(369)-A2 complex expression. However, compared with untreated cells, cytokine-treated cell lines showed an increase in Her2(369)-A2 epitope density that directly correlated with enhanced tumor cell death (p = 0.05). Although a trend was observed between tumor cell lysis and the level of the Her2(369)-A2 complex for untreated cells, the association was not significant. These findings suggest that tumor cell susceptibility to CTL-mediated lysis may be predicted based on the level of specific peptide-MHC class I expression rather than on the total level of TAA expression. Further, these studies demonstrate the potential of the TCRm mAb for validation of endogenous HLA-peptide epitopes on tumor cells.


Journal of Immunology | 2010

TCR Mimic Monoclonal Antibody Targets a Specific Peptide/HLA Class I Complex and Significantly Impedes Tumor Growth In Vivo Using Breast Cancer Models

Bhavna Verma; Francisca Neethling; Shannon Caseltine; Ginger Fabrizio; Sherly R. Largo; J. Andrew Duty; Piotr Tabaczewski; Jon A. Weidanz

Our laboratory has developed a process for generating mAbs with selectivity to unique peptides in the context of MHC molecules. Recently, we reported that RL4B, an mAb that we have called a TCR mimic (TCRm) because it recognizes peptide in the context of MHC, has cytotoxic activity in vitro and prevented growth of tumor cells in a prophylactic setting. When presented in the context of HLA-A2, RL4B TCRm recognizes the peptide GVLPALPQV derived from human chorionic gonadotropin (hCG)-β. In this study, we show that RL4B TCRm has strong binding affinity for the GVLPALPQV peptide/HLA-A2 epitope and fine binding specificity for cells that express endogenous hCGβ Ag and HLA-A2. In addition, suppression of tumor growth with RL4B TCRm was observed in orthotopic models for breast cancer. Using two aggressive human tumor cell lines, MDA-MB-231 and MCF-7, we provide evidence that RL4B TCRm significantly retards tumor growth, supporting a possible role for TCRm agents in therapeutic settings. Moreover, tumors in mice responded to RL4B TCRm therapy in a dose-dependent manner, eliminating tumors at the highest dose. RL4B TCRm strongly detects the hCGβ peptide/HLA-A2 epitope in human primary breast tumor tissue, but does not react or reacts weakly with normal breast tissue from the same patient. These results further illustrate the selective nature of TCRm Abs and the clinical relevance of the GVLPALPQV peptide/HLA-A2 epitope expression in tumor cells, because they provide the first evidence that Abs that mimic the TCR can be used to markedly reduce and suppress tumor growth.


Cancer Immunology, Immunotherapy | 2004

A soluble single-chain T-cell receptor IL-2 fusion protein retains MHC-restricted peptide specificity and IL-2 bioactivity.

Kimberlyn F. Card; Shari A. Price-Schiavi; Bai Liu; Elizabeth L. Thomson; Esperanza Liliana Nieves; Heather J. Belmont; Janette Builes; Jin-An Jiao; Javier Hernandez; Jon A. Weidanz; Linda A. Sherman; John L. Francis; Ali Amirkhosravi; Hing C. Wong

Antibody-based targeted immunotherapy has shown promise as an approach to treat cancer. However, many known tumor-associated antigens are not expressed as integral membrane proteins and cannot be utilized as targets for antibody-based therapeutics. In order to expand the limited target range of antibodies, we have constructed a soluble single-chain T-cell receptor (TCR) fusion protein designated 264scTCR/IL-2. This fusion protein is comprised of a three-domain HLA-A2-restricted TCR specific for a peptide epitope of the human p53 tumor suppressor protein, which is overexpressed in a broad range of human malignancies. The 264scTCR/IL-2 fusion protein has been expressed at high levels in mammalian cells, and milligram quantities have been purified. MHC-restricted antigen-specific binding properties are maintained in the single-chain, three-domain TCR portion of the fusion protein, and the IL-2 portion retains bioactivity similar to that of free recombinant IL-2. Moreover, this fusion protein is capable of conjugating target and effector cells, remains intact in the blood and substantially increases the half life of the IL-2 portion of the molecule. Finally, the 264scTCR/IL-2 fusion protein can be used to stain tumor cells and is capable of reducing lung metastases in an experimental model of metastasis. Thus, TCR-based fusion proteins may provide a novel class of targeted immunotherapeutics for cancer.


Journal of Immunology | 2006

Antibody Targeting to a Class I MHC-Peptide Epitope Promotes Tumor Cell Death

Vaughan P. Wittman; David Woodburn; Tiffany Nguyen; Francisca Neethling; Stephen E. Wright; Jon A. Weidanz

Therapeutic mAbs that target tumor-associated Ags on the surface of malignant cells have proven to be an effective and specific option for the treatment of certain cancers. However, many of these protein markers of carcinogenesis are not expressed on the cells’ surface. Instead these tumor-associated Ags are processed into peptides that are presented at the cell surface, in the context of MHC class I molecules, where they become targets for T cells. To tap this vast source of tumor Ags, we generated a murine IgG2a mAb, 3.2G1, endowed with TCR-like binding specificity for peptide-HLA-A*0201 (HLA-A2) complex and designated this class of Ab as TCR mimics (TCRm). The 3.2G1 TCRm recognizes the GVL peptide (GVLPALPQV) from human chorionic gonadotropin β presented by the peptide-HLA-A*0201 complex. When used in immunofluorescent staining reactions using GVL peptide-loaded T2 cells, the 3.2G1 TCRm specifically stained the cells in a peptide and Ab concentration-dependent manner. Staining intensity correlated with the extent of cell lysis by complement-dependent cytotoxicity (CDC), and a peptide concentration-dependent threshold level existed for the CDC reaction. Staining of human tumor lines demonstrated that 3.2G1 TCRm was able to recognize endogenously processed peptide and that the breast cancer cell line MDA-MB-231 highly expressed the target epitope. The 3.2G1 TCRm-mediated CDC and Ab-dependent cellular cytotoxicity of a human breast carcinoma line in vitro and inhibited in vivo tumor implantation and growth in nude mice. These results provide validation for the development of novel TCRm therapeutic reagents that specifically target and kill tumors via recognition and binding to MHC-peptide epitopes.


Journal of Immunology | 2011

TCR Mimic Monoclonal Antibodies Induce Apoptosis of Tumor Cells via Immune Effector-Independent Mechanisms

Bhavna Verma; Rinki Jain; Shannon Caseltine; Aaron D. Rennels; Raktima Bhattacharya; Maciej M. Markiewski; Amit Rawat; Francisca Neethling; Ulrich Bickel; Jon A. Weidanz

mAbs that recognize peptides presented on the cell surface by MHC class I molecules are potential therapeutic agents for cancer therapy. We have previously demonstrated that these Abs, which we termed TCR mimic mAbs (TCRm), reduce tumor growth in models of breast carcinoma. However, mechanisms of TCRm-mediated tumor growth reduction remain largely unknown. In this study, we report that these Abs, in contrast to several mAbs used currently in the clinic, destroy tumor cells independently of immune effector mechanisms such as Ab-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). We found that TCRm-mediated apoptosis of tumor cells was associated with selective and specific binding of these Abs to peptide/HLA class I complexes, which triggered the activation of JNK and intrinsic caspase pathways. This signaling was accompanied by the release of mitochondrial cytochrome c and apoptosis-inducing factor. TCRm-induced apoptosis in tumor cells was completely inhibited by soluble MHC tetramers loaded with relevant peptide as well as with inhibitors for JNK and caspases. Furthermore, mAbs targeting MHC class I, independent of the peptide bound by HLA, did not stimulate apoptosis, suggesting that the Ab-binding site on the MHC/peptide complex determines cytotoxicity. This study suggests the existence of mechanisms, in addition to ADCC and CDC, through which these therapeutic Abs destroy tumor cells. These mechanisms would appear to be of particular importance in severely immunocompromised patients with advanced neoplastic disease, since immune cell-mediated killing of tumor cells through ADCC and CDC is substantially limited in these individuals.


Journal of Pharmaceutical Sciences | 2009

Biochemical mechanism of acetaminophen (APAP) induced toxicity in melanoma cell lines

Nikhil M. Vad; Garret Yount; Dan H. Moore; Jon A. Weidanz; Majid Y. Moridani

In this work, we investigated the biochemical mechanism of acetaminophen (APAP) induced toxicity in SK-MEL-28 melanoma cells using tyrosinase enzyme as a molecular cancer therapeutic target. Our results showed that APAP was metabolized 87% by tyrosinase at 2 h incubation. AA and NADH, quinone reducing agents, were significantly depleted during APAP oxidation by tyrosinase. The IC(50) (48 h) of APAP towards SK-MEL-28, MeWo, SK-MEL-5, B16-F0, and B16-F10 melanoma cells was 100 microM whereas it showed no significant toxicity towards BJ, Saos-2, SW-620, and PC-3 nonmelanoma cells, demonstrating selective toxicity towards melanoma cells. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, enhanced APAP toxicity towards SK-MEL-28 cells. AA and GSH were effective in preventing APAP induced melanoma cell toxicity. Trifluoperazine and cyclosporin A, inhibitors of permeability transition pore in mitochondria, significantly prevented APAP melanoma cell toxicity. APAP caused time and dose-dependent decline in intracellular GSH content in SK-MEL-28, which preceded cell toxicity. APAP led to ROS formation in SK-MEL-28 cells which was exacerbated by dicoumarol and 1-bromoheptane whereas cyslosporin A and trifluoperazine prevented it. Our investigation suggests that APAP is a tyrosinase substrate, and that intracellular GSH depletion, ROS formation and induced mitochondrial toxicity contributed towards APAPs selective toxicity in SK-MEL-28 cells.


Cancer Immunology, Immunotherapy | 2010

Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties

Bhavna Verma; Oriana Hawkins; Francisca Neethling; Shannon Caseltine; Sherly R. Largo; William H. Hildebrand; Jon A. Weidanz

The identification and validation of new cancer-specific T cell epitopes continues to be a major area of research interest. Nevertheless, challenges remain to develop strategies that can easily discover and validate epitopes expressed in primary cancer cells. Regarded as targets for T cells, peptides presented in the context of the major histocompatibility complex (MHC) are recognized by monoclonal antibodies (mAbs). These mAbs are of special importance as they lend themselves to the detection of epitopes expressed in primary tumor cells. Here, we use an approach that has been successfully utilized in two different infectious disease applications (WNV and influenza). A direct peptide-epitope discovery strategy involving mass spectrometric analysis led to the identification of peptide YLLPAIVHI in the context of MHC A*02 allele (YLL/A2) from human breast carcinoma cell lines. We then generated and characterized an anti-YLL/A2 mAb designated as RL6A TCRm. Subsequently, the TCRm mAb was used to directly validate YLL/A2 epitope expression in human breast cancer tissue, but not in normal control breast tissue. Moreover, mice implanted with human breast cancer cells grew tumors, yet when treated with RL6A TCRm showed a marked reduction in tumor size. These data demonstrate for the first time a coordinated direct discovery and validation strategy that identified a peptide/MHC complex on primary tumor cells for antibody targeting and provide a novel approach to cancer immunotherapy.


Expert Review of Proteomics | 2006

Direct class I HLA antigen discovery to distinguish virus-infected and cancerous cells

Angela R. Wahl; Jon A. Weidanz; William H. Hildebrand

Class I human leukocyte antigen molecules are nature’s proteome-scanning chips, presenting thousands of endogenously loaded peptides on the surface of virtually every cell in the body. Cytotoxic T cells survey the class I human leukocyte antigen peptide cargo presented, recognize peptides unique to unhealthy cells and destroy diseased cells. A precise understanding of how class I molecules distinguish diseased cells is positioned to drive immune-based diagnostics, therapies and vaccines. When identifying epitopes unique to unhealthy cells, the most experimentally direct approach is to examine the class I-presented peptides of infected/cancerous cells. Here we discuss the strategies adapted for protein production, protein/peptide purification, peptide separation and for maintaining experimental reproducibility during the direct characterization of class I human leukocyte antigen peptides.

Collaboration


Dive into the Jon A. Weidanz's collaboration.

Top Co-Authors

Avatar

William H. Hildebrand

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilfried Bardet

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Curtis McMurtrey

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Linda A. Sherman

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Oriana Hawkins

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhavna Verma

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Maurizio Chiriva-Internati

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge