Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon B. Prince is active.

Publication


Featured researches published by Jon B. Prince.


Journal of Experimental Psychology: Human Perception and Performance | 2009

Pitch and Time, Tonality and Meter: How Do Musical Dimensions Combine?

Jon B. Prince; William Forde Thompson; Mark A. Schmuckler

The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger influence than temporal position (Experiment 1), even when listeners attempted to ignore pitch (Experiment 2). Speeded classification tasks confirmed this asymmetry. Temporal classification was biased by tonal stability (Experiment 3), but pitch classification was unaffected by temporal position (Experiment 4). Experiments 5 and 6 ruled out explanations based on the presence of pitch classes and temporal positions in the context, unequal stimulus quantity, and discriminability. The authors discuss how typical Western music biases attention toward pitch and distinguish between dimensional discriminability and salience.


Memory & Cognition | 2009

The effect of task and pitch structure on pitch-time interactions in music

Jon B. Prince; Mark A. Schmuckler; William Forde Thompson

Musical pitch-time relations were explored by investigating the effect of temporal variation on pitch perception. In Experiment 1, trained musicians heard a standard tone followed by a tonal context and then a comparison tone. They then performed one of two tasks. In the cognitive task, they indicated whether the comparison tone was in the key of the context. In the perceptual task, they judged whether the comparison tone was higher or lower than the standard tone. For both tasks, the comparison tone occurred early, on time, or late with respect to temporal expectancies established by the context. Temporal variation did not affect accuracy in either task. Experiment 2 used the perceptual task and varied the pitch structure by employing either a tonal or an atonal context. Temporal variation did not affect accuracy for tonal contexts, but did for atonal contexts. Experiment 3 replicated these results and controlled potential confounds. We argue that tonal contexts bias attention toward pitch and eliminate effects of temporal variation, whereas atonal contexts do not, thus fostering pitch-time interactions. Psychonomic Society, Inc.


Quarterly Journal of Experimental Psychology | 2011

The integration of stimulus dimensions in the perception of music

Jon B. Prince

A central aim of cognitive psychology is to explain how we integrate stimulus dimensions into a unified percept, but how the dimensions of pitch and time combine in the perception of music remains a largely unresolved issue. The goal of this study was to test the effect of varying the degree of conformity to dimensional structure in pitch and time (specifically, tonality and metre) on goodness ratings and classifications of melodies. The pitches and durations of melodies were either presented in their original order, as a reordered sequence, or replaced with random elements. Musically trained and untrained participants (24 each) rated melodic goodness, attending selectively to the dimensions of pitch, time, or both. Also, 24 trained participants classified whether or not the melodies were tonal, metric, or both. Pitch and temporal manipulations always influenced responses, but participants successfully emphasized either dimension in accordance with instructions. Effects of pitch and time were mostly independent for selective attention conditions, but more interactive when evaluating both dimensions. When interactions occurred, the effect of either dimension increased as the other dimension conformed more to its original structure. Relative main effect sizes (| pitch η2 – time η2 |) predicted the strength of pitch–time interactions (pitch × time η2); interactions were stronger when main effect sizes were more evenly matched. These results have implications for dimensional integration in several domains. Relative main effect size could serve as an indicator of dimensional salience, such that interactions are more likely when dimensions are equally salient.


Journal of Experimental Psychology: Human Perception and Performance | 2014

Contributions of Pitch Contour, Tonality, Rhythm, and Meter to Melodic Similarity

Jon B. Prince

The identity of a melody resides in its sequence of pitches and durations, both of which exhibit surface details as well as structural properties. In this study, pitch contour (pattern of ups and downs) served as pitch surface information, and tonality (musical key) as pitch structure; in the temporal dimension, surface information was the ordinal duration ratios of adjacent notes (rhythm), and meter (beat, or pulse) comprised the structure. Factorially manipulating the preservation or alteration of all of these forms of information in 17 novel melodies (typifying Western music) enabled measuring their effect on perceived melodic similarity. In Experiment 1, 34 participants (varied musical training) rated the perceived similarity of melody pairs transposed to new starting pitches. Rhythm was the largest contributor to perceived similarity, then contour, meter, and tonality. Experiment 2 used the same melodies but varied the tempo within a pair, and added a prefix of 3 chords, which oriented the listener to the starting pitch and tempo before the melody began. Now contour was the strongest influence on similarity ratings, followed by tonality, and then rhythm; meter was not significant. Overall, surface features influenced perceived similarity more than structural, but both had observable effects. The primary theoretical advances in melodic similarity research are that (a) the relative emphasis on pitch and temporal factors is flexible; (b) pitch and time functioned independently when factorially manipulated, regardless of which dimension is more influential; and (c) interactions between surface and structural information were unreliable and never occurred between dimensions.


Journal of Experimental Psychology: Human Perception and Performance | 2014

Pitch Structure, But Not Selective Attention, Affects Accent Weightings in Metrical Grouping

Jon B. Prince

Among other cues, pitch and temporal accents contribute to grouping in musical sequences. However, exactly how they combine remains unclear, possibly because of the role of structural organization. In 3 experiments, participants rated the perceived metrical grouping of sequences that either adhered to the rules of tonal Western musical pitch structure (musical key) or did not (atonal). The tonal status of sequences did not provide any grouping cues and was irrelevant to the task. Experiment 1 established equally strong levels of pitch leap accents and duration accents in baseline conditions, which were then recombined in subsequent experiments. Neither accent type was stronger or weaker for tonal and atonal contexts. In Experiment 2, pitch leap accents dominated over duration accents, but the extent of this advantage was greater when sequences were tonal. Experiment 3 ruled out an attentional origin of this effect by replicating this finding while explicitly manipulating attention to pitch or duration accents between participant groups. Overall, the presence of tonal pitch structure made the dimension of pitch more salient at the expense of time. These findings support a dimensional salience framework in which the presence of organizational structure prioritizes the processing of the more structured dimension regardless of task relevance, independent from psychophysical difficulty, and impervious to attentional allocation.


Musicae Scientiae | 2018

Interference in memory for pitch-only and rhythm-only sequences

Steffen A. Herff; Kirk N. Olsen; Jon B. Prince; Roger T. Dean

In human memory, the ability to recognize a previously encountered stimulus often undergoes cumulative interference when the number of intervening items between its first and second presentation increases. Although this is a common effect in many domains, melodies composed in tuning systems familiar to participants (e.g., Western tonal music) do not seem to suffer such cumulative decrements in recognition performance. Interestingly, melodies in unfamiliar tuning systems do show cumulative decrements. This finding has been predicted by a novel Regenerative Multiple Representations (RMR) conjecture. The present study further explores this phenomenon and the conjecture by investigating pitch-only (isochronous rhythm) and rhythm-only (monotone pitch) sequences of melodies in an unfamiliar tuning system that previously showed cumulative disruptive effects. Experiment 1 replicated previous studies reporting significant interference effects from the number of intervening items when melodies use uncommon rhythms and are composed in an unfamiliar tuning system. Furthermore, as predicted by the RMR conjecture, when rhythmic information was neutralized (Experiment 2), the cumulative interference related to the number of intervening items was retained. This was also the case when the original pitch information of each melody was neutralized, leaving variation only in the rhythmic information (Experiment 3). Results are discussed in the context of the RMR conjecture: given converse results, the conjecture would have been falsified. However, it currently remains plausible and appears to be a useful tool for precise predictions about the link between prior experience, perception, and formation of new memories.


Acta Psychologica | 2012

The role of pitch and temporal diversity in the perception and production of musical sequences

Jon B. Prince; Peter Q. Pfordresher

In two experiments we explored how the dimensions of pitch and time contribute to the perception and production of musical sequences. We tested how dimensional diversity (the number of unique categories in each dimension) affects how pitch and time combine. In Experiment 1, 18 musically trained participants rated the complexity of sequences varying only in their diversity in pitch or time; a separate group of 18 pianists reproduced these sequences after listening to them without practice. Overall, sequences with more diversity were perceived as more complex, but pitch diversity influenced ratings more strongly than temporal diversity. Further, although participants perceived sequences with high levels of pitch diversity as more complex, errors were more common in the sequences with higher diversity in time. Sequences in Experiment 2 exhibited diversity in both pitch and time; diversity levels were a subset of those tested in Experiment 1. Again diversity affected complexity ratings and errors, but there were no statistical interactions between dimensions. Nonetheless, pitch diversity was the primary factor in determining perceived complexity, and again temporal errors occurred more often than pitch errors. Additionally, diversity in one dimension influenced error rates in the other dimension in that both error types were more frequent relative to Experiment 1. These results suggest that although pitch and time do not interact directly, they are nevertheless not processed in an informationally encapsulated manner. The findings also align with a dimensional salience hypothesis, in which pitch is prioritised in the processing of typical Western musical sequences.


Quarterly Journal of Experimental Psychology | 2017

Memory for melodies in unfamiliar tuning systems: Investigating effects of recency and number of intervening items

Steffen A. Herff; Kirk N. Olsen; Roger T. Dean; Jon B. Prince

In a continuous recognition paradigm, most stimuli elicit superior recognition performance when the item to be recognised is the most recent stimulus (a recency-in-memory effect). Furthermore, increasing the number of intervening items cumulatively disrupts memory in most domains. Memory for melodies composed in familiar tuning systems also shows superior recognition for the most recent melody, but no disruptive effects from the number of intervening melodies. A possible explanation has been offered in a novel regenerative multiple representations (RMR) conjecture. The RMR assumes that prior knowledge informs perception and perception influences memory representations. It postulates that melodies are perceived, thus also represented, simultaneously as integrated entities and also their components (such as pitches, pitch intervals, short phrases, and rhythm). Multiple representations of the melody components and melody as a whole can restore one another, thus providing resilience against disruptive effects from intervening items. The conjecture predicts that melodies in an unfamiliar tuning system are not perceived as integrated melodies and should: a) disrupt recency-in-memory advantages; and b) facilitate disruptive effects from the number of intervening items. We test these two predictions in three experiments. Experiments 1 and 2 show that no recency-in-memory effects emerge for melodies in an unfamiliar tuning system. In Experiment 3, disruptive effects occurred as the number of intervening items and unfamiliarity of the stimuli increased. Overall, results are coherent with the predictions of the RMR conjecture. Further investigation of the conjectures predictions may lead to greater understanding of the fundamental relationships between memory, perception, and behavior.


Journal of Experimental Psychology: Learning, Memory and Cognition | 2018

Learning of pitch and time structures in an artificial grammar setting.

Jon B. Prince; Catherine J. Stevens; Mari Riess Jones; Barbara Tillmann

Despite the empirical evidence for the power of the cognitive capacity of implicit learning of structures and regularities in several modalities and materials, it remains controversial whether implicit learning extends to the learning of temporal structures and regularities. We investigated whether (a) an artificial grammar can be learned equally well when expressed in duration sequences as when expressed in pitch sequences, (b) learning of the artificial grammar in either duration or pitch (as the primary dimension) sequences can be influenced by the properties of the secondary dimension (invariant vs. randomized), and (c) learning can be boosted when the artificial grammar is expressed in both pitch and duration. After an exposure phase with grammatical sequences, learning in a subsequent test phase was assessed in a grammaticality judgment task. Participants in both the pitch and duration conditions showed incidental (not fully implicit) learning of the artificial grammar when the secondary dimension was invariant, but randomizing the pitch sequence prevented learning of the artificial grammar in duration sequences. Expressing the artificial grammar in both pitch and duration resulted in disproportionately better performance, suggesting an interaction between the learning of pitch and temporal structure. The findings are relevant to research investigating the learning of temporal structures and the learning of structures presented simultaneously in 2 dimensions (e.g., space and time, space and objects). By investigating learning, the findings provide further insight into the potential specificity of pitch and time processing, and their integrated versus independent processing, as previously debated in music cognition research.


Journal of Experimental Psychology: Human Perception and Performance | 2018

Regularity and dimensional salience in temporal grouping.

Jon B. Prince; Tim Rice

How do pitch and duration accents combine to influence the perceived grouping of musical sequences? Sequence context influences the relative importance of these accents; for example, the presence of learned structure in pitch exaggerates the effect of pitch accents at the expense of duration accents despite being irrelevant to the task and not attributable to attention (Prince, 2014b). In the current study, two experiments examined whether the presence of temporal structure has the opposite effect. Experiment 1 tested baseline conditions, in which participants (N = 30) heard sequences with various sizes of either pitch or duration accents, which implied either duple or triple groupings (accent every two or three notes, respectively). Sequences either had regular temporal structure (isochronous) or not (irregular, via using random interonset intervals). Regularity enhanced the effect of duration accents but had negligible influence on pitch accents. The accent sizes that gave the most equivalent ratings across dimension and regularity levels were used in Experiment 2 (N = 33), in which sequences contained both pitch and duration accents that suggested either duple, triple, or neutral groupings. Despite controlling for the baseline effect of regularity by selecting equally effective accent sizes, regularity had additional effects on duration accents, but only for duple groupings. Regularity did not influence the effectiveness of pitch accents when combined with duration accents. These findings offer some support for a dimensional salience hypothesis, which proposes that the presence of temporal structure should foster duration accent effectiveness at the expense of pitch accents.

Collaboration


Dive into the Jon B. Prince's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirk N. Olsen

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Roger T. Dean

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge