Jon C. D. Houtman
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jon C. D. Houtman.
Genome Biology | 2010
Kumaran Kandasamy; S. Sujatha Mohan; Rajesh Raju; Shivakumar Keerthikumar; Ghantasala S. Sameer Kumar; Abhilash Venugopal; Deepthi Telikicherla; Daniel J. Navarro; Suresh Mathivanan; Christian Pecquet; Sashi Kanth Gollapudi; Sudhir Gopal Tattikota; Shyam Mohan; Hariprasad Padhukasahasram; Yashwanth Subbannayya; Renu Goel; Harrys K.C. Jacob; Jun Zhong; Raja Sekhar; Vishalakshi Nanjappa; Lavanya Balakrishnan; Roopashree Subbaiah; Yl Ramachandra; B. Abdul Rahiman; T. S. Keshava Prasad; Jian Xin Lin; Jon C. D. Houtman; Stephen Desiderio; Jean-Christophe Renauld; Stefan N. Constantinescu
We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles. We anticipate NetPath to become a consolidated resource for human signaling pathways that should enable systems biology approaches.
Protein Science | 2007
Jon C. D. Houtman; Patrick H. Brown; Brent Bowden; Hiroshi Yamaguchi; Ettore Appella; Lawrence E. Samelson; Peter Schuck
Multisite interactions and the formation of ternary or higher‐order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T‐cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T‐cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.
Nature Structural & Molecular Biology | 2006
Jon C. D. Houtman; Hiroshi Yamaguchi; Mira Barda-Saad; Alex Braiman; Brent Bowden; Ettore Appella; Peter Schuck; Lawrence E. Samelson
Receptor oligomerization is vital for activating intracellular signaling, in part by initiating events that recruit effector and adaptor proteins to sites of active signaling. Whether these distal molecules themselves oligomerize is not well appreciated. In this study, we examined the molecular interactions of the adaptor protein GRB2. In T cells, the SH2 domain of GRB2 binds phosphorylated tyrosines on the adaptor protein LAT and the GRB2 SH3 domains associate with the proline-rich regions of SOS1 and CBL. Using biochemical and biophysical techniques in conjunction with confocal microscopy, we observed that the simultaneous association of GRB2, via its SH2 and SH3 domains, with multivalent ligands led to the oligomerization of these ligands, which affected signaling. These data suggest that multipoint binding of distal adaptor proteins mediates the formation of oligomeric signaling clusters vital for intracellular signaling.
Journal of Immunology | 2005
Jon C. D. Houtman; Richard A. Houghtling; Mira Barda-Saad; Yoko Toda; Lawrence E. Samelson
Activation of T cells via the stimulation of the TCR plays a central role in the adaptive immunological response. Although much is known about TCR-stimulated signaling pathways, there are still gaps in our knowledge about the kinetics and sequence of events during early activation and about the in vivo specificity of kinases involved in these proximal signaling pathways. This information is important not only for understanding the activation of signaling pathways important for T cell function but also for the development of drug targets and computer-based molecular models. In this study, phospho-specific Abs directed toward individual sites on signaling proteins were used to investigate the early phosphorylation kinetics of proteins involved in proximal TCR-induced pathways. These studies indicate that linker for activation of T cells’ tyrosines have substantially different phosphorylation kinetics and that Src homology 2 domain-containing leukocyte protein of 76 kDa has rapid, transient phosphorylation kinetics compared to other proteins. In additions, we provide evidence that ZAP-70 is the primary in vivo kinase for LAT tyrosine 191 and that Itk plays a role in the phosphorylation of tyrosine 783 on phospholipase C-γ1. In total, these studies give new insight into the sequence, kinetics and specificity of early TCR-mediated signaling events that are vital for T cell activation.
The EMBO Journal | 2010
Mira Barda-Saad; Naoto Shirasu; Maor H. Pauker; Nirit Hassan; Orly Perl; Andrea Balbo; Hiroshi Yamaguchi; Jon C. D. Houtman; Ettore Appella; Peter Schuck; Lawrence E. Samelson
T‐cell antigen receptor (TCR) engagement induces formation of multi‐protein signalling complexes essential for regulating T‐cell functions. Generation of a complex of SLP‐76, Nck and VAV1 is crucial for regulation of the actin machinery. We define the composition, stoichiometry and specificity of interactions in the SLP‐76, Nck and VAV1 complex. Our data reveal that this complex can contain one SLP‐76 molecule, two Nck and two VAV1 molecules. A direct interaction between Nck and VAV1 is mediated by binding between the C‐terminal SH3 domain of Nck and the VAV1 N‐terminal SH3 domain. Disruption of the VAV1:Nck interaction deleteriously affected actin polymerization. These novel findings shed new light on the mechanism of actin polymerization after T‐cell activation.
Nature Structural & Molecular Biology | 2009
Alessandra Picollo; Mattia Malvezzi; Jon C. D. Houtman; Alessio Accardi
Ion binding to secondary active transporters triggers a cascade of conformational rearrangements resulting in substrate translocation across cellular membranes. Despite the fundamental role of this step, direct measurements of binding to transporters are rare. We investigated ion binding and selectivity in CLC-ec1, a H+-Cl− exchanger of the CLC family of channels and transporters. Cl− affinity depends on the conformation of the protein: it is highest with the extracellular gate removed and weakens as the transporter adopts the occluded configuration and with the intracellular gate removed. The central ion-binding site determines selectivity in CLC transporters and channels. A serine-to-proline substitution at this site confers NO3− selectivity upon the Cl−-specific CLC-ec1 transporter and CLC-0 channel. We propose that CLC-ec1 operates through an affinity-switch mechanism and that the bases of substrate specificity are conserved in the CLC channels and transporters.
Journal of Biological Chemistry | 1999
Sung-Oh Kim; Jon C. D. Houtman; Jing Jiang; J. Michael Ruppert; Paul J. Bertics; Stuart J. Frank
The growth hormone receptor (GHR), a cytokine receptor superfamily member, requires the JAK2 tyrosine kinase for signaling. We now examine functional interactions between growth hormone (GH) and epidermal growth factor (EGF) in 3T3-F442A fibroblasts. Although EGF enhanced ErbB-2 tyrosine phosphorylation, GH, while causing retardation of its migration on SDS-polyacrylamide gel electrophoresis, decreased ErbB-2s tyrosine phosphorylation. GH-induced retardation was reversed by treatment of anti-ErbB-2 precipitates with both alkaline phosphatase and protein phosphatase 2A, suggesting that GH induced serine/threonine phosphorylation of ErbB-2. Both GH-induced shift in ErbB-2 migration and GH-induced MAP kinase activation were unaffected by a protein kinase C inhibitor but were blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK1) inhibitor, PD98059. Notably, leukemia inhibitory factor, but not interferon-γ, also promoted ErbB-2 shift and mitogen-activated protein kinase activation. Cotreatment with EGF and GH versus EGF alone resulted in a 35% decline in acute ErbB-2 tyrosine 1248 autophosphorylation, a marked decline (approximately 50%) in DNA synthesis, and substantially decreased cyclin D1 expression. We conclude that in 3T3-F442A cells, 1) the GH-induced decrease in ErbB-2 tyrosine phosphorylation correlates with MEK1/mitogen-activated protein kinase activity and 2) GH antagonizes EGF-induced DNA synthesis and cyclin D1 expression in a pattern consistent with its alteration in ErbB-2 phosphorylation status.
Journal of Biological Chemistry | 2008
Jason W. Johnston; Nathan P. Coussens; Simon Allen; Jon C. D. Houtman; Keith H. Turner; Anthony Zaleski; S. Ramaswamy; Bradford W. Gibson; Michael A. Apicella
Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4Å resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.
PLOS ONE | 2009
Rebekah R. Bartelt; Noemi Cruz-Orcutt; Michaela Collins; Jon C. D. Houtman
Background Human T cells play an important role in pathogen clearance, but their aberrant activation is also linked to numerous diseases. T cells are activated by the concurrent induction of the T cell receptor (TCR) and one or more costimulatory receptors. The characterization of signaling pathways induced by TCR and/or costimulatory receptor activation is critical, since these pathways are excellent targets for novel therapies for human disease. Although studies using human T cell lines have provided substantial insight into these signaling pathways, no comprehensive, direct comparison of these cell lines to activated peripheral blood T cells (APBTs) has been performed to validate their usefulness as a model of primary T cells. Methodology/Principal Findings We used quantitative biochemical techniques to compare the activation of two widely used human T cell lines, Jurkat E6.1 and HuT78 T cells, to APBTs. We found that HuT78 cells were similar to APBTs in proximal TCR-mediated signaling events. In contrast, Jurkat E6.1 cells had significantly increased site-specific phosphorylation of Pyk2, PLCγ1, Vav1, and Erk1/Erk2 and substantially more Ca2+ flux compared to HuT78 cells and APBTs. In part, these effects appear to be due to an overexpression of Itk in Jurkat E6.1 cells compared to HuT78 cells and APBTs. Both cell lines differ from APBTs in the expression and function of costimulatory receptors and in the range of cytokines and chemokines released upon TCR and costimulatory receptor activation. Conclusions/Significance Both Jurkat E6.1 and HuT78 T cells had distinct similarities and differences compared to APBTs. Both cell lines have advantages and disadvantages, which must be taken into account when choosing them as a model T cell line.
FEBS Journal | 2005
Jon C. D. Houtman; Mira Barda-Saad; Lawrence E. Samelson
Dynamic protein–protein interactions are involved in most physiological processes and, in particular, for the formation of multiprotein signaling complexes at transmembrane receptors, adapter proteins and effector molecules. Because the unregulated induction of signaling complexes has substantial clinical relevance, the investigation of these complexes is an active area of research. These studies strive to answer questions about the composition and function of multiprotein signaling complexes, along with the molecular mechanisms of their formation. In this review, the adapter protein, linker for activation of T cells (LAT), will be employed as a model to exemplify how signaling complexes are characterized using a range of techniques. The intensive investigation of LAT highlights how the systematic use of complementary techniques leads to an integrated understanding of the formation, composition and function of multiprotein signaling complexes that occur at receptors, adapter proteins and effector molecules.