Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon C. Rees is active.

Publication


Featured researches published by Jon C. Rees.


Analytical Chemistry | 2011

Detection of Staphylococcus aureus using 15N-labeled bacteriophage amplification coupled with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

Carrie L. Pierce; Jon C. Rees; Facundo M. Fernández; John R. Barr

A novel approach to rapid bacterial detection using an isotopically labeled (15)N bacteriophage and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is introduced. Current phage amplification detection (PAD) via mass spectrometric analysis is limited because host bacteria must be inoculated with low phage titers in such a way that initial infecting phage concentrations must be below the detection limit of the instrument, thus lengthening incubation times. Additionally, PAD techniques cannot distinguish inoculate input phage from output phage which can increase the possibility of false positive results. Here, we report a rapid and accurate PAD approach for identification of Staphylococcus aureus via detection of bacteriophage capsid proteins. This approach uses both a wild-type (14)N and a (15)N-isotopically labeled S. aureus-specific bacteriophage. High (15)N phage titers, above our instruments detection limits, were used to inoculate S. aureus. MALDI-TOF MS detection of the (14)N progeny capsid proteins in the phage-amplified culture indicated the presence of the host bacteria. Successful phage amplification was observed after 90 min of incubation. The amplification was observed by both MALDI-TOF MS analysis and by standard plaque assay measurements. This method overcomes current limitations by improving analysis times while increasing selectivity when compared to previously reported PAD methodologies.


Analytical and Bioanalytical Chemistry | 2012

De novo subtype and strain identification of botulinum neurotoxin type B through toxin proteomics

Suzanne R. Kalb; Jakub Baudys; Jon C. Rees; Theresa J. Smith; Leonard A. Smith; Charles H. Helma; Karen K. Hill; Skadi Kull; Sebastian Kirchner; Martin B. Dorner; Brigitte G. Dorner; James L. Pirkle; John R. Barr

AbstractBotulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A–G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence, and many subtypes are further differentiated into toxin variants. Previous work in our laboratory described the use of a proteomics approach to distinguish subtype BoNT/A1 from BoNT/A2 where BoNT identities were confirmed after searching data against a database containing protein sequences of all known BoNT/A subtypes. We now describe here a similar approach to differentiate subtypes BoNT/B1, /B2, /B3, /B4, and /B5. Additionally, to identify new subtypes or hitherto unpublished amino acid substitutions, we created an amino acid substitution database covering every possible amino acid change. We used this database to differentiate multiple toxin variants within subtypes of BoNT/B1 and B2. More importantly, with our amino acid substitution database, we were able to identify a novel BoNT/B subtype, designated here as BoNT/B7. These techniques allow for subtype and strain level identification of both known and unknown BoNT/B rapidly with no DNA required. FigureIdentification of an existing or new BoNT/B can be accomplished through MS/MS analysis of digestion fragments of the protein.


Journal of Lipid Research | 2017

Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma

John A. Bowden; Alan Heckert; Candice Z. Ulmer; Christina M. Jones; Jeremy P. Koelmel; Laila Abdullah; Linda Ahonen; Yazen Alnouti; Aaron M. Armando; John M. Asara; Takeshi Bamba; John R. Barr; Jonas Bergquist; Christoph H. Borchers; Joost Brandsma; Susanne B. Breitkopf; Tomas Cajka; Amaury Cazenave-Gassiot; Antonio Checa; Michelle A. Cinel; Romain A. Colas; Serge Cremers; Edward A. Dennis; James E. Evans; Alexander Fauland; Oliver Fiehn; Michael S. Gardner; Timothy J. Garrett; Katherine H. Gotlinger; Jun Han

As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950–Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.


Analytical Biochemistry | 2013

Improved detection of botulinum neurotoxin serotype A by Endopep-MS through peptide substrate modification.

Dongxia Wang; Jakub Baudys; Yiming Ye; Jon C. Rees; John R. Barr; James L. Pirkle; Suzanne R. Kalb

Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to humans. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype-specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep-MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype-specific antibodies and detecting the unique and serotype-specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep-MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity 5-fold with toxin spiked into buffer solution or different biological matrices.


Molecular & Cellular Proteomics | 2012

Viable Staphylococcus aureus Quantitation using 15N Metabolically Labeled Bacteriophage Amplification Coupled with a Multiple Reaction Monitoring Proteomic Workflow

Carrie L. Pierce; Jon C. Rees; Facundo M. Fernández; John R. Barr

A multiple reaction monitoring liquid chromatography method with tandem mass spectrometric detection for quantitation of Staphylococcus aureus via phage amplification detection is described. This phage amplification detection method enables rapid and accurate quantitation of viable S. aureus by detecting an amplified capsid protein from a specific phage. A known amount of metabolically labeled 15N reference bacteriophage, utilized as the input phage and as the internal standard for quantitation, was spiked into S. aureus samples. Following a 2-h incubation, the sample was subjected to a 3-min rapid trypsin digest and analyzed by high-throughput liquid chromatography tandem mass spectrometric detection targeting peptides unique to both the 15N (input phage) and 14N (progeny phage) capsid proteins. Quantitation was achieved by comparing peak areas of target peptides from the metabolically labeled 15N bacteriophage peptide internal standard with that of the wild-type 14N peptides that were produced by phage amplification and subsequent digestion when the host bacteria was present. This approach is based on the fact that a labeled species differs from the unlabeled one in terms of its mass but exhibits almost identical chemical properties such as ion yields and retention times. A 6-point calibration curve for S. aureus concentration was constructed with standards ranging from 5.0 × 104 colony forming units (CFU) ml−1 to 2.0 × 106 CFU ml−1, with the 15N reference phage spiked at a concentration of 1.0 × 109 plaque forming units (PFU) ml−1. Amplification with 15N bacteriophage coupled with LC-MS/MS detection offers speed (3 h total analysis time), sensitivity (LOD: < 5.0 × 104 CFU ml−1), accuracy, and precision for quantitation of S. aureus.


Journal of Mass Spectrometry | 2013

Modified MALDI MS fatty acid profiling for bacterial identification.

Kent J. Voorhees; Kirk R. Jensen; Casey R. McAlpin; Jon C. Rees; Robert B. Cody; Masaaki Ubukata; Christopher R. Cox

Bacterial fatty acid profiling is a well-established technique for bacterial identification. Ten bacteria were analyzed using both positive- and negative-ion modes with a modified matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) approach using CaO as a matrix replacement (metal oxide laser ionization MS (MOLI MS)). The results show that reproducible lipid cleavage similar to thermal in situ tetramethyl ammonium hydroxide saponification/derivatization had occurred. Principal component analysis showed that replicates from each organism grouped in a unique space. Cross validation (CV) of spectra from both ionization modes resulted in greater than 94% validation of the data. When CV results were compared for the two ionization modes, negative-ion data produced a superior outcome. MOLI MS provides clinicians a rapid, reproducible and cost-effective bacterial diagnostic tool.


Analytical Chemistry | 2015

Simultaneous Identification and Susceptibility Determination to Multiple Antibiotics of Staphylococcus aureus by Bacteriophage Amplification Detection Combined with Mass Spectrometry

Jon C. Rees; Carrie L. Pierce; David Schieltz; John R. Barr

The continued advance of antibiotic resistance in clinically relevant bacterial strains necessitates the development and refinement of assays that can rapidly and cost-effectively identify bacteria and determine their susceptibility to a panel of antibiotics. A methodology is described herein that exploits the specificity and physiology of the Staphylococci bacteriophage K to identify Staphylococcus aureus (S. aureus) and determine its susceptibility to clindamycin and cefoxitin. The method uses liquid chromatography-mass spectrometry to monitor the replication of bacteriophage after it is used to infect samples thought to contain S. aureus. Amplification of bacteriophage K indicates the sample contains S. aureus, for it is only in the presence of a suitable host that bacteriophage K can amplify. If bacteriophage amplification is detected in samples containing the antibiotics clindamycin or cefoxitin, the sample is deemed to be resistant to these antibiotics, respectively, for bacteriophage can only amplify in a viable host. Thus, with a single work flow, S. aureus can be detected in an unknown sample and susceptibility to clindamycin and cefoxitin can be ascertained. This Article discusses implications for the use of bacteriophage amplification in the clinical laboratory.


BioMed Research International | 2010

Mass Spectrometric Analysis of Multiple Pertussis Toxins and Toxoids

Yulanda M. Williamson; Hercules Moura; David M. Schieltz; Jon C. Rees; Adrian R. Woolfitt; James L. Pirkle; Jacquelyn S. Sampson; Maria L. Tondella; Edwin W. Ades; George M. Carlone; John R. Barr

Bordetella pertussis (Bp) is the causative agent of pertussis, a vaccine preventable disease occurring primarily in children. In recent years, there has been increased reporting of pertussis. Current pertussis vaccines are acellular and consist of Bp proteins including the major virulence factor pertussis toxin (Ptx), a 5-subunit exotoxin. Variation in Ptx subunit amino acid (AA) sequence could possibly affect the immune response. A blind comparative mass spectrometric (MS) analysis of commercially available Ptx as well as the chemically modified toxoid (Ptxd) from licensed vaccines was performed to assess peptide sequence and AA coverage variability as well as relative amounts of Ptx subunits. Qualitatively, there are similarities among the various sources based on AA percent coverages and MS/MS fragmentation profiles. Additionally, based on a label-free mass spectrometry-based quantification method there is differential relative abundance of the subunits among the sources.


BMC Microbiology | 2011

A historical and proteomic analysis of botulinum neurotoxin type/G

Rebecca R. Terilli; Hercules Moura; Adrian R. Woolfitt; Jon C. Rees; David M. Schieltz; John R. Barr

BackgroundClostridium botulinum is the taxonomic designation for at least six diverse species that produce botulinum neurotoxins (BoNTs). There are seven known serotypes of BoNTs (/A through/G), all of which are potent toxins classified as category A bioterrorism agents. BoNT/G is the least studied of the seven serotypes. In an effort to further characterize the holotoxin and neurotoxin-associated proteins (NAPs), we conducted an in silico and proteomic analysis of commercial BoNT/G complex. We describe the relative quantification of the proteins present in the/G complex and confirm our ability to detect the toxin activity in vitro. In addition, we review previous literature to provide a complete description of the BoNT/G complex.ResultsAn in-depth comparison of protein sequences indicated that BoNT/G shares the most sequence similarity with the/B serotype. A temperature-modified Endopep-MS activity assay was successful in the detection of BoNT/G activity. Gel electrophoresis and in gel digestions, followed by MS/MS analysis of/G complex, revealed the presence of four proteins in the complexes: neurotoxin (BoNT) and three NAPs--nontoxic-nonhemagglutinin (NTNH) and two hemagglutinins (HA70 and HA17). Rapid high-temperature in-solution tryptic digestions, coupled with MS/MS analysis, generated higher than previously reported sequence coverages for all proteins associated with the complex: BoNT 66%, NTNH 57%, HA70 91%, and HA17 99%. Label-free relative quantification determined that the complex contains 30% BoNT, 38% NTNH, 28% HA70, and 4% HA17 by weight comparison and 17% BoNT, 23% NTNH, 42% HA70, and 17% HA17 by molecular comparison.ConclusionsThe in silico protein sequence comparisons established that the/G complex is phenetically related to the other six serotypes of C. botulinum. Proteomic analyses and Endopep-MS confirmed the presence of BoNT and NAPs, along with the activity of the commercial/G complex. The use of data-independent MSE data analysis, coupled to label-free quantification software, suggested that the weight ratio BoNT:NAPs is 1:3, whereas the molar ratio of BoNT:NTNH:HA70:HA17 is 1:1:2:1, within the BoNT/G progenitor toxin.


Journal of Proteomics | 2017

On-column trypsin digestion coupled with LC-MS/MS for quantification of apolipoproteins

Christopher A. Toth; Zsuzsanna Kuklenyik; Jeffrey I. Jones; Bryan A. Parks; Michael S. Gardner; David M. Schieltz; Jon C. Rees; Michael L. Andrews; Lisa G. McWilliams; James L. Pirkle; John R. Barr

Apolipoproteins measured in plasma or serum are potential biomarkers for assessing metabolic irregularities that are associated with the development of cardiovascular disease (CVD). LC-MS/MS allows quantitative measurement of multiple apolipoproteins in the same sample run. However, the accuracy and precision of the LC-MS/MS measurement depends on the reproducibility of the enzymatic protein digestion step. With the application of an immobilized enzyme reactor (IMER), the reproducibility of the trypsin digestion can be controlled with high precision via flow rate, column volume and temperature. In this report, we demonstrate the application of an integrated IMER-LC-MS/MS platform for the simultaneous quantitative analysis of eight apolipoproteins. Using a dilution series of a characterized serum pool as calibrator, the method was validated by repeated analysis of pooled sera and individual serum samples with a wide range of lipid profiles, all showing intra-assay CV<4.4% and inter-assay CV<8%. In addition, the method was compared with traditional homogeneous digestion coupled LC-MS/MS for the quantification of apoA-I and apoB-100. Applied in large scale human population studies, this method can serve the translation of a wider panel of apolipoprotein biomarkers from research to clinical application. SIGNIFICANCE Currently, the translation of apolipoprotein biomarkers to clinical application is impaired because of the high cost of large cohort studies using traditional single-analyte immunoassays. The application of on-line tryptic digestion coupled with LC-MS/MS analysis is an effective way to address this problem. In this work we demonstrate a high throughput, multiplexed, automated proteomics workflow for the simultaneous analysis of multiple proteins.

Collaboration


Dive into the Jon C. Rees's collaboration.

Top Co-Authors

Avatar

John R. Barr

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

David M. Schieltz

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Yulanda M. Williamson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Adrian R. Woolfitt

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Hercules Moura

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James L. Pirkle

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

David Schieltz

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Edwin W. Ades

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

George M. Carlone

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jacquelyn S. Sampson

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge