Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon Crowcroft is active.

Publication


Featured researches published by Jon Crowcroft.


IEEE Journal on Selected Areas in Communications | 1996

Quality-of-service routing for supporting multimedia applications

Zheng Wang; Jon Crowcroft

Several new architectures have been developed for supporting multimedia applications such as digital video and audio. However, quality-of-service (QoS) routing is an important element that is still missing from these architectures. In this paper, we consider a number of issues in QoS routing. We first examine the basic problem of QoS routing, namely, finding a path that satisfies multiple constraints, and its implications on routing metric selection, and then present three path computation algorithms for source routing and for hop-by-hop routing.


IEEE ACM Transactions on Networking | 2008

XORs in the air: practical wireless network coding

Sachin Katti; Hariharan Rahul; Wenjun Hu; Dina Katabi; Muriel Médard; Jon Crowcroft

This paper proposes COPE, a new architecture for wireless mesh networks. In addition to forwarding packets, routers mix (i.e., code) packets from different sources to increase the information content of each transmission. We show that intelligently mixing packets increases network throughput. Our design is rooted in the theory of network coding. Prior work on network coding is mainly theoretical and focuses on multicast traffic. This paper aims to bridge theory with practice; it addresses the common case of unicast traffic, dynamic and potentially bursty flows, and practical issues facing the integration of network coding in the current network stack. We evaluate our design on a 20-node wireless network, and discuss the results of the first testbed deployment of wireless network coding. The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput. The gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.


mobile ad hoc networking and computing | 2008

Bubble rap: social-based forwarding in delay tolerant networks

Pan Hui; Jon Crowcroft; Eiko Yoneki

The increasing penetration of smart devices with networking capability form novel networks. Such networks, also referred as pocket switched networks (PSNs), are intermittently connected and represent a paradigm shift of forwarding data in an ad hoc manner. The social structure and interaction of users of such devices dictate the performance of routing protocols in PSNs. To that end, social information is an essential metric for designing forwarding algorithms for such types of networks. Previous methods relied on building and updating routing tables to cope with dynamic network conditions. On the downside, it has been shown that such approaches end up being cost ineffective due to the partial capture of the transient network behavior. A more promising approach would be to capture the intrinsic characteristics of such networks and utilize them in the design of routing algorithms. In this paper, we exploit two social and structural metrics, namely centrality and community, using real human mobility traces. The contributions of this paper are two-fold. First, we design and evaluate BUBBLE, a novel social-based forwarding algorithm, that utilizes the aforementioned metrics to enhance delivery performance. Second, we empirically show that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social-based forwarding SimBet algorithm.


IEEE Communications Surveys and Tutorials | 2005

A survey and comparison of peer-to-peer overlay network schemes

Eng Keong Lua; Jon Crowcroft; Marcelo Pias; Ravi S. Sharma; Steven Lim

Over the Internet today, computing and communications environments are significantly more complex and chaotic than classical distributed systems, lacking any centralized organization or hierarchical control. There has been much interest in emerging Peer-to-Peer (P2P) network overlays because they provide a good substrate for creating large-scale data sharing, content distribution, and application-level multicast applications. These P2P overlay networks attempt to provide a long list of features, such as: selection of nearby peers, redundant storage, efficient search/location of data items, data permanence or guarantees, hierarchical naming, trust and authentication, and anonymity. P2P networks potentially offer an efficient routing architecture that is self-organizing, massively scalable, and robust in the wide-area, combining fault tolerance, load balancing, and explicit notion of locality. In this article we present a survey and comparison of various Structured and Unstructured P2P overlay networks. We categorize the various schemes into these two groups in the design spectrum, and discuss the application-level network performance of each group.


IEEE Transactions on Mobile Computing | 2007

Impact of Human Mobility on Opportunistic Forwarding Algorithms

Augustin Chaintreau; Pan Hu; Jon Crowcroft; Christophe Diot; Richard Gass; James Scott

We study data transfer opportunities between wireless devices carried by humans. We observe that the distribution of the intercontact time (the time gap separating two contacts between the same pair of devices) may be well approximated by a power law over the range [10 minutes; 1 day]. This observation is confirmed using eight distinct experimental data sets. It is at odds with the exponential decay implied by the most commonly used mobility models. In this paper, we study how this newly uncovered characteristic of human mobility impacts one class of forwarding algorithms previously proposed. We use a simplified model based on the renewal theory to study how the parameters of the distribution impact the performance in terms of the delivery delay of these algorithms. We make recommendations for the design of well-founded opportunistic forwarding algorithms in the context of human-carried devices


IEEE Transactions on Mobile Computing | 2011

BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks

Pan Hui; Jon Crowcroft; Eiko Yoneki

The increasing penetration of smart devices with networking capability form novel networks. Such networks, also referred as pocket switched networks (PSNs), are intermittently connected and represent a paradigm shift of forwarding data in an ad hoc manner. The social structure and interaction of users of such devices dictate the performance of routing protocols in PSNs. To that end, social information is an essential metric for designing forwarding algorithms for such types of networks. Previous methods relied on building and updating routing tables to cope with dynamic network conditions. On the downside, it has been shown that such approaches end up being cost ineffective due to the partial capture of the transient network behavior. A more promising approach would be to capture the intrinsic characteristics of such networks and utilize them in the design of routing algorithms. In this paper, we exploit two social and structural metrics, namely centrality and community, using real human mobility traces. The contributions of this paper are two-fold. First, we design and evaluate BUBBLE, a novel social-based forwarding algorithm, that utilizes the aforementioned metrics to enhance delivery performance. Second, we empirically show that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social-based forwarding SimBet algorithm.


ieee international conference computer and communications | 2006

Impact of Human Mobility on the Design of Opportunistic Forwarding Algorithms

Augustin Chaintreau; Pan Hui; Jon Crowcroft; Christophe Diot; Richard Gass; James Scott

Studying transfer opportunities between wireless devices carried by humans, we observe that the distribution of the inter-contact time, that is the time gap separating two contacts of the same pair of devices, exhibits a heavy tail such as one of a power law, over a large range of value. This observation is confirmed on six distinct experimental data sets. It is at odds with the exponential decay implied by most mobility models. In this paper, we study how this new characteristic of human mobility impacts a class of previously proposed forwarding algorithms. We use a simplified model based on the renewal theory to study how the parameters of the distribution impact the delay performance of these algorithms. We make recommendation for the design of well founded opportunistic forwarding algorithms, in the context of human carried devices.


symposium on operating systems principles | 2005

Vigilante: end-to-end containment of internet worms

Manuel Costa; Jon Crowcroft; Miguel Castro; Antony I. T. Rowstron; Lidong Zhou; Lintao Zhang; Paul Barham

Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work has proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. We propose Vigilante, a new end-to-end approach to contain worms automatically that addresses these limitations. Vigilante relies on collaborative worm detection at end hosts, but does not require hosts to trust each other. Hosts run instrumented software to detect worms and broadcast self-certifying alerts (SCAs) upon worm detection. SCAs are proofs of vulnerability that can be inexpensively verified by any vulnerable host. When hosts receive an SCA, they generate filters that block infection by analysing the SCA-guided execution of the vulnerable software. We show that Vigilante can automatically contain fast-spreading worms that exploit unknown vulnerabilities without blocking innocuous traffic.


acm special interest group on data communication | 2004

Honeycomb: creating intrusion detection signatures using honeypots

Christian Kreibich; Jon Crowcroft

This paper describes a system for automated generation of attack signatures for network intrusion detection systems. Our system applies pattern-matching techniques and protocol conformance checks on multiple levels in the protocol hierarchy to network traffic captured a honeypot system. We present results of running the system on an unprotected cable modem connection for 24 hours. The system successfully created precise traffic signatures that otherwise would have required the skills and time of a security officer to inspect the traffic manually.


international conference on computer communications | 1998

TCP-like congestion control for layered multicast data transfer

Lorenzo Vicisano; Jon Crowcroft; Luigi Rizzo

We present a novel congestion control algorithm suitable for use with cumulative, layered data streams in the MBone. Our algorithm behaves similarly to TCP congestion control algorithms, and shares bandwidth fairly with other instances of the protocol and with TCP flows. It is entirely receiver driven and requires no per-receiver status at the sender, in order to scale to large numbers of receivers. It relies on standard functionalities of multicast routers, and is suitable for continuous stream and reliable bulk data transfer. In the paper we illustrate the algorithm, characterize its response to losses both analytically and by simulations, and analyse its behaviour using simulations and experiments in real networks. We also show how error recovery can be dealt with independently from congestion control by using FEC techniques, so as to provide reliable bulk data transfer.

Collaboration


Dive into the Jon Crowcroft's collaboration.

Top Co-Authors

Avatar

Pan Hui

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiko Yoneki

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Zheng Wang

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Wang

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Handley

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge