Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon D. Bates is active.

Publication


Featured researches published by Jon D. Bates.


Journal of Range Management | 2000

Understory dynamics in cut and uncut western juniper woodlands

Jon D. Bates; Richard F. Miller; Tony J. Svejcar

Expansion of western juniper (Juniperus occidentalis spp. occidentalis Hook.) woodlands in the sagebrush steppe has the potential to change composition, structure, and productivity of understory vegetation. Cutting of western juniper woodland can potentially restore understory productivity and diversity. Understory responses were assessed after cutting a juniper woodland in southeastern Oregon in 1991. The experimental design was a randomized complete block with eight, 0.8 ha sized blocks and 2 treatments, cut and uncut woodland. Understory cover, density, diversity, biomass, and nitrogen (N) status were compared between treatments after cutting Plants were separated into S functional groups: bluegrass (Poa spp.), perennial bunchgrass, perennial forte, annual forte, and annual grass. Cutting of juniper reduced below ground interference for soil water and N. Leaf water potentials were less negative (p<0.01) and understory N concentration and biomass N were greater (p<0.05) in the cut versus woodland treatment. Cutting of juniper trees was effective in increasing total understory biomass, cover, and diversity. In the second year post-cutting total understory biomass and N uptake were nearly 9 times greater in cut versus woodland treatments. Perennial plant basal cover was 3 times greater and plant diversity was 1.6 times greater in the cut versus woodland treatments. In the cut, perennial bunchgrass density increased by 1 plant m-2 in both duff and interspace zones and bluegrass increased by 3 plants m-2 in interspaces. Plant succession was dominated by pants present on the site prior to juniper cutting suggesting that pre-treatment floristics may be useful in predicting early successional understory response. Early plant dynamics on this site supports the multiple entrance point model of succession as perennial grasses and bluegrass made up the majority of total herbaceous biomass and cover. DOI:10.2458/azu_jrm_v53i1_bates


Ecological Applications | 2009

Interaction of historical and nonhistorical disturbances maintains native plant communities

Kirk W. Davies; Tony J. Svejcar; Jon D. Bates

Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (<0.5% cover), and vegetation characteristics were similar between grazed and ungrazed treatments. However, litter accumulation was almost twofold greater in ungrazed than in grazed treatments. Long-term grazing exclusion followed by burning resulted in a substantial B. tectorum invasion, but burning the grazed areas did not produce an invasion. The ungrazed-burned treatment also had less perennial vegetation than other treatments. The accumulation of litter (fuel) in ungrazed treatments may have resulted in greater fire-induced mortality of perennial vegetation in ungrazed compared to grazed treatments. Our results demonstrate that prior disturbances exert a strong influence on the response of plant communities to subsequent disturbances and suggest that low-severity disturbances may be needed in some plant communities to increase their resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.


Rangeland Ecology & Management | 2007

Runoff and Erosion After Cutting Western Juniper

Frederick B. Pierson; Jon D. Bates; Tony J. Svejcar; Stuart P. Hardegree

Abstract Western juniper (Juniperus occidentalis spp. occidentalis Hook.) has encroached on and now dominates millions of acres of sagebrush/bunchgrass rangeland in the Great Basin and interior Pacific Northwest. On many sites western juniper has significantly increased exposure of the soil surface by reducing density of understory species and surface litter. We used rainfall and rill simulation techniques to evaluate infiltration, runoff, and erosion on cut and uncut field treatments 10 years after juniper removal. Juniper-dominated hillslopes had significantly lower surface soil cover of herbaceous plants and litter and produced rapid runoff from low-intensity rainfall events of the type that would be expected to occur every 2 years. Direct exposure of the soil to rainfall impacts resulted in high levels of sheet erosion (295 kg · ha−1) in juniper-dominated plots. Large interconnected patches of bare ground concentrated runoff into rills with much higher flow velocity and erosive force resulting in rill erosion rates that were over 15 times higher on juniper-dominated plots. Cutting juniper stimulated herbaceous plant recovery, improved infiltration capacity, and protected the soil surface from even large thunderstorms. Juniper-free plots could only be induced to produce runoff from high-intensity events that would be expected to occur once every 50 years. Runoff events from these higher-intensity simulations produced negligible levels of both sheet and rill erosion. While specific inferences drawn from the current study are limited to juniper-affected sites in the Intermountain sagebrush steppe, the scope of ecosystem impacts are consistent with woody-plant invasion in other ecosystems around the world.


Rangeland Ecology & Management | 2010

Vegetation Characteristics of Mountain and Wyoming Big Sagebrush Plant Communities in the Northern Great Basin

Kirk W. Davies; Jon D. Bates

Abstract Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and, therefore, may be more useful indicators of plant community potential and provide more precise information for management. Big sagebrush (Artemisia tridentata Nutt.) occurs across large expanses of the western United States. Common subspecies of big sagebrush have considerable variation in the types of sites they occupy, but information that quantifies differences in their vegetation characteristics is lacking. Consequently, wildlife and land management guidelines frequently do not differentiate between subspecies of big sagebrush. To quantify vegetation characteristics between two common subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Half of the sampled plant communities were Wyoming big sagebrush (A. tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) plant communities, and the other half were mountain big sagebrush (A. tridentata subsp. vaseyana [Rydb.] Beetle) plant communities. In general, mountain big sagebrush plant communities were more diverse and had greater vegetation cover, density, and biomass production than Wyoming big sagebrush plant communities. Sagebrush cover was, on average, 2.4-fold higher in mountain big sagebrush plant communities. Perennial forb density and cover were 3.8- and 5.6-fold greater in mountain compared to Wyoming big sagebrush plant communities. Total herbaceous biomass production was approximately twofold greater in mountain than Wyoming big sagebrush plant communities. The results of this study suggest that management guidelines for grazing, wildlife habitat, and other uses should recognize widespread subspecies as indicators of differences in site potentials.


International Journal of Wildland Fire | 2016

Winter grazing can reduce wildfire size, intensity and behaviour in a shrub-grassland

Kirk W. Davies; Chad S. Boyd; Jon D. Bates; April Hulet

An increase in mega-fires and wildfires is a global issue that is expected to become worse with climate change. Fuel treatments are often recommended to moderate behaviour and decrease severity of wildfires; however, the extensive nature of rangelands limits the use of many treatments. Dormant-season grazing has been suggested as a rangeland fuel treatment, but its effects on fire characteristics are generally unknown. We investigated the influence of dormant-season (winter) grazing by cattle (Bos taurus) on fuel characteristics, fire behaviour and area burned in Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) shrub-grassland communities in south-eastern Oregon, USA. Winter grazing was applied for 5 years before burning and compared with ungrazed areas. Winter grazing decreased fine fuels and increased fine fuel moisture, which reduced flame height and depth, rate of spread and area burned. Winter-grazed areas also had lower maximum temperature and heat loading during fires than ungrazed areas, and thereby decreased risk of fire-induced mortality of important herbaceous functional groups. These results suggest that winter grazing may be a fuel management treatment that can be applied across vast shrub-grasslands to decrease wildfire risk and fire intensity to mediate climate change effects on wildfire activity.


Rangeland Ecology & Management | 2007

The Influence of Gap Size on Sagebrush Cover Estimates With the Use of Line Intercept Technique

Chad S. Boyd; Jon D. Bates; Richard F. Miller

Abstract Sagebrush cover is often estimated with the use of the line intercept method. However, a lack of standardized protocols may lead to variable estimates of sagebrush canopy cover. Our objectives were to determine the influence of gap size on 1) sagebrush canopy cover estimates, 2) time needed to read a transect, and 3) among-observer variability in sagebrush canopy cover estimates. We utilized 5-, 10-, and 15-cm gaps, and defined a gap as a lack of continuous live or dead shrub canopy. In instances where a segment of dead cover was less than the gap size and adjoined live cover, the dead cover was measured as live. We evaluated canopy cover at 6 Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. Wyomingensis Beetle & A. Young) sites in southeast Oregon. At each site, four 2-person teams measured sagebrush canopy intercept along 50-m transects. Each transect was read by multiple teams to allow for assessment of among-observer variability. Intercept values were converted to percent canopy cover and we used analysis of variance to determine the influence of site and gap size on measurement time and cover estimates. Observer variability was highest at the intermediate gap size (i.e., 10 cm). Transect measurement time was longest with the use of a 5-cm gap (P < 0.001). Total cover estimates were not related to gap size (P = 0.270). Live canopy cover estimates increased (P < 0.001) from 12.1% to 14.5% with increasing gap size, and cover of dead material decreased (P = 0.015) from 4.4% to 3.2%. These differences are small in magnitude and would not likely change a gross assessment of vegetation status. However, use of a standardized gap size will enhance comparability of canopy cover estimates among studies and will decrease between-year sampling error for repeat monitoring.


International Journal of Wildland Fire | 2015

Dormant season grazing may decrease wildfire probability by increasing fuel moisture and reducing fuel amount and continuity

Kirk W. Davies; Chad S. Boyd; Jon D. Bates; April Hulet

Mega-fires and unprecedented expenditures on fire suppression over the past decade have resulted in a renewed focus on presuppression management. Dormant season grazing may be a treatment to reduce fuels in rangeland, but its effects have not been evaluated. In the present study, we evaluated the effect of dormant season grazing (winter grazing in this ecosystem) by cattle on fuel characteristics in sagebrush (Artemisia L.) communities at five sites in south- eastern Oregon. Winter grazing reduced herbaceous fuel cover, continuity, height and biomass without increasing exotic annual grass biomass or reducing bunchgrass basal area or production. Fuel moisture in winter-grazed areas was high enough that burning was unlikely until late August; in contrast, fuels in ungrazed areas were dry enough to burn in late June. Fuel biomasson perennial bunchgrasses was decreased by 60% with winter grazing, whichmayreduce the potential for fire-induced mortality. The cumulative effect of winter grazing from altering multiple fuel characteristics may reduce the likelihood of fire and the potential severity in sagebrush communities with an understorey dominated by herbaceous perennials. Dormant season grazing has the potential to reduce wildfire suppression expenditures in many rangelands where herbaceous fuels are an issue; however, increasing woody vegetation and extreme fire weather may limit its influence. Additional keywords: fuel management, sagebrush, sage-grouse habitat, wildfire suppression, winter grazing.


Rangeland Ecology & Management | 2017

The Sage-Grouse Habitat Mortgage: Effective Conifer Management in Space and Time☆

Chad S. Boyd; Jay D. Kerby; Tony J. Svejcar; Jon D. Bates; Dustin D. Johnson; Kirk W. Davies

ABSTRACT Management of conservation-reliant species can be complicated by the need to manage ecosystem processes that operate at extended temporal horizons. One such process is the role of fire in regulating abundance of expanding conifers that disrupt sage-grouse habitat in the northern Great Basin of the United States. Removing conifers by cutting has a beneficial effect on sage-grouse habitat. However, effects may last only a few decades because conifer seedlings are not controlled and the seed bank is fully stocked. Fire treatment may be preferred because conifer control lasts longer than for mechanical treatments. The amount of conservation needed to control conifers at large temporal and spatial scales can be quantified by multiplying land area by the time needed for conifer abundance to progress to critical thresholds (i.e., “conservation volume”). The contribution of different treatments in arresting conifer succession can be calculated by dividing conservation volume by the duration of treatment effect. We estimate that fire has approximately twice the treatment life of cutting at time horizons approaching 100 yr, but, has high up-front conservation costs due to temporary loss of sagebrush. Cutting has less up-front conservation costs because sagebrush is unaffected, but it is more expensive over longer management time horizons because of decreased durability. Managing conifers within sage-grouse habitat is difficult because of the necessity to maintain the majority of the landscape in sagebrush habitat and because the threshold for negative conifer effects occurs fairly early in the successional process. The time needed for recovery of sagebrush creates limits to fire use in managing sage-grouse habitat. Utilizing a combination of fire and cutting treatments is most financially and ecologically sustainable over long time horizons involved in managing conifer-prone sage-grouse habitat.


Rangeland Ecology & Management | 2016

Effects of Intermediate-Term Grazing Rest on Sagebrush Communities with Depleted Understories: Evidence of a Threshold ☆ ☆☆

Kirk W. Davies; Jon D. Bates; Chad S. Boyd

ABSTRACT Millions of hectares of sagebrush (Artemisia L.) plant communities have been degraded by past improper management, resulting in dense sagebrush stands with depleted herbaceous understories. Rest from grazing is often applied to promote recovery. However, the effect of intermediate-term (5–10 years) rest from grazing in sagebrush communities with depleted herbaceous understories and dense sagebrush is relatively unknown. We compared well-managed, moderate grazing (grazed) with intermediate-term (5 and 6 years) rest (ungrazed) at five sites in southeastern Oregon. Sites were Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young) communities with dense sagebrush and depleted herbaceous understories. Perennial herbaceous cover was greater in ungrazed compared with grazed areas, but this was expected because herbivory removes foliar vegetation tissue (i.e., cover). Density of herbaceous vegetation, diversity, and species richness did not differ between ungrazed and grazed areas. Similarly, bare ground, litter, and biological soil crust cover did not differ between treatments. These results suggest that intermediate-term rest is unlikely to elicit recovery of the understory compared with moderate grazing in these communities. The results of this study also suggest that degraded Wyoming big sagebrush communities likely have crossed a threshold that may be difficult to reverse.


Ecology and Evolution | 2016

Prefire grazing by cattle increases postfire resistance to exotic annual grass (Bromus tectorum) invasion and dominance for decades.

Kirk W. Davies; Jon D. Bates; Chad S. Boyd; Tony J. Svejcar

Abstract Fire, herbivory and their interaction influence plant community dynamics. However, little is known about the influence of prefire herbivory on postfire plant community response, particularly long‐term resistance to postfire exotic plant invasion in areas that historically experienced limited large herbivore pressure and infrequent, periodic fires. We investigated the long‐term postfire effects of prefire herbivory by cattle, an exotic herbivore, in Artemisia (sagebrush) plant communities in the northern Great Basin, USA. Study areas were moderately grazed or not grazed by cattle since 1936 and then were burned in 1993. Plant community response was measured the 19th through the 22nd year postfire. Prior to burning exotic annual grass presence was minimal (<0.5% foliar cover) and plant community characteristics were similar between grazed and ungrazed treatments, with the exception of litter biomass being two times greater in the ungrazed treatment. Two decades postfire, Bromus tectorum L., an exotic annual grass, dominated the ungrazed treatment. Native bunchgrasses, species richness, and soil biological crusts were greater in prefire grazed areas compared to ungrazed areas. These results suggest that moderate prefire herbivory by cattle increased the resistance of the plant community to postfire invasion and dominance by B. tectorum. We presume that herbivory reduced mortality of large perennial bunchgrasses during the fire by reducing fine fuel (litter) and subsequently burn temperatures. Synthesis: This research demonstrates that a moderate disturbance (herbivory) may mediate the effects of a subsequent disturbance (fire). The effects of disturbances are not independent; therefore quantifying these interactions is critical to preventing oversimplification of complex plant community dynamics and guiding the conservation of endangered ecosystems.

Collaboration


Dive into the Jon D. Bates's collaboration.

Top Co-Authors

Avatar

Kirk W. Davies

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Chad S. Boyd

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Tony J. Svejcar

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleta M. Nafus

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Amanda Gearhart

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond F. Angell

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge