Jon D. Wright
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jon D. Wright.
eLife | 2015
Tammy M.K. Cheng; Sebastian Heeger; Raphael Chaleil; Nik Matthews; Aengus Stewart; Jon D. Wright; Carmay Lim; Paul A. Bates; Frank Uhlmann
Mitotic chromosomes were one of the first cell biological structures to be described, yet their molecular architecture remains poorly understood. We have devised a simple biophysical model of a 300 kb-long nucleosome chain, the size of a budding yeast chromosome, constrained by interactions between binding sites of the chromosomal condensin complex, a key component of interphase and mitotic chromosomes. Comparisons of computational and experimental (4C) interaction maps, and other biophysical features, allow us to predict a mode of condensin action. Stochastic condensin-mediated pairwise interactions along the nucleosome chain generate native-like chromosome features and recapitulate chromosome compaction and individualization during mitotic condensation. Higher order interactions between condensin binding sites explain the data less well. Our results suggest that basic assumptions about chromatin behavior go a long way to explain chromosome architecture and are able to generate a molecular model of what the inside of a chromosome is likely to look like. DOI: http://dx.doi.org/10.7554/eLife.05565.001
Nucleic Acids Research | 2012
Yao Chi Chen; Jon D. Wright; Carmay Lim
DR_bind is a web server that automatically predicts DNA-binding residues, given the respective protein structure based on (i) electrostatics, (ii) evolution and (iii) geometry. In contrast to machine-learning methods, DR_bind does not require a training data set or any parameters. It predicts DNA-binding residues by detecting a cluster of conserved, solvent-accessible residues that are electrostatically stabilized upon mutation to Asp−/Glu−. The server requires as input the DNA-binding protein structure in PDB format and outputs a downloadable text file of the predicted DNA-binding residues, a 3D visualization of the predicted residues highlighted in the given protein structure, and a downloadable PyMol script for visualization of the results. Calibration on 83 and 55 non-redundant DNA-bound and DNA-free protein structures yielded a DNA-binding residue prediction accuracy/precision of 90/47% and 88/42%, respectively. Since DR_bind does not require any training using protein–DNA complex structures, it may predict DNA-binding residues in novel structures of DNA-binding proteins resulting from structural genomics projects with no conservation data. The DR_bind server is freely available with no login requirement at http://dnasite.limlab.ibms.sinica.edu.tw.
Scientific Reports | 2015
Jon D. Wright; Hsing-Mao Chu; Chun-Hsiang Huang; Che Ma; Tse Wen Chang; Carmay Lim
Omalizumab, an anti-IgE antibody, used to treat severe allergic asthma and chronic idiopathic urticaria, binds to IgE in blood or membrane-bound on B lymphocytes but not to IgE bound to its high (FcεRI) or low (CD23) affinity receptor. Mutagenesis studies indicate overlapping FcεRI and omalizumab-binding sites in the Cε3 domain, but crystallographic studies show FcεRI and CD23-binding sites that are far apart, so how can omalizumab block IgE from binding both receptors? We report a 2.42-Å omalizumab-Fab structure, a docked IgE-Fc/omalizumab-Fab structure consistent with available experimental data, and the free energy contributions of IgE residues to binding omalizumab, CD23, and FcεRI. These results provide a structural and physical basis as to why omalizumab cannot bind receptor-bound IgE and why omalizumab-bound IgE cannot bind to CD23/FcεRI. They reveal the key IgE residues and their roles in binding omalizumab, CD23, and FcεRI.
Journal of Biosciences | 2007
Jon D. Wright; Carmay Lim
Over 50% of all human cancers involve p53 mutations, which occur mostly in the sequence-specific DNA-binding central domain (p53c), yielding little/non-detectable affinity to the DNA consensus site. Despite our current understanding of protein-DNA recognition, the mechanism(s) underlying the loss in protein-DNA binding affinity/specificity upon single-point mutation are not well understood. Our goal is to identify the common factors governing the DNA-binding loss of p53c upon substitution of Arg 273 to His or Cys, which are abundant in human tumours. By computing the free energies of wild-type and mutant p53c binding to DNA and decomposing them into contributions from individual residues, the DNA-binding loss upon charge/noncharge-conserving mutation of Arg 273 was attributed not only to the loss of DNA phosphate contacts, but also to longer-range structural changes caused by the loss of the Asp 281 salt-bridge. The results herein and in previous works suggest that Asp 281 plays a critical role in the sequence-specific DNA-binding function of p53c by (i) orienting Arg 273 and Arg 280 in an optimal position to interact with the phosphate and base groups of the consensus DNA, respectively, and (ii) helping to maintain the proper DNA-binding protein conformation.
Nature Communications | 2014
Hsing-Mao Chu; Jon D. Wright; Yueh-Hsuan Chan; Chien-Jen Lin; Tse Wen Chang; Carmay Lim
IgE mediates hypersensitivity reactions responsible for most allergic diseases, which affect 20-40% of the population in developed countries. A 52-residue domain of membrane-bound IgE (mIgE) called CεmX is currently a target for developing therapeutic antibodies; however, its structure is unknown. Here we show that two antibodies with therapeutic potential in IgE-mediated allergic diseases, which can cause cytolytic effects on mIgE-expressing B lymphocytes and downregulate IgE production, target different conformations of an intrinsically disordered region (IDR) in the extracellular CεmX domain. We provide an important example of antibodies targeting an extracellular IDR of a receptor on the surface of intended target cells. We also provide fundamental structural characteristics unique to human mIgE, which may stimulate further studies to investigate whether other monoclonal antibodies (mAbs) targeting intrinsically disordered peptide segments or vaccine-like products targeting IDRs of a membrane protein can be developed.
Nucleic Acids Research | 2014
Yao Chi Chen; Karen Sargsyan; Jon D. Wright; Yi-Shuian Huang; Carmay Lim
Increasing numbers of protein structures are solved each year, but many of these structures belong to proteins whose sequences are homologous to sequences in the Protein Data Bank. Nevertheless, the structures of homologous proteins belonging to the same family contain useful information because functionally important residues are expected to preserve physico-chemical, structural and energetic features. This information forms the basis of our method, which detects RNA-binding residues of a given RNA-binding protein as those residues that preserve physico-chemical, structural and energetic features in its homologs. Tests on 81 RNA-bound and 35 RNA-free protein structures showed that our method yields a higher fraction of true RNA-binding residues (higher precision) than two structure-based and two sequence-based machine-learning methods. Because the method requires no training data set and has no parameters, its precision does not degrade when applied to ‘novel’ protein sequences unlike methods that are parameterized for a given training data set. It was used to predict the ‘unknown’ RNA-binding residues in the C-terminal RNA-binding domain of human CPEB3. The two predicted residues, F430 and F474, were experimentally verified to bind RNA, in particular F430, whose mutation to alanine or asparagine nearly abolished RNA binding. The method has been implemented in a webserver called DR_bind1, which is freely available with no login requirement at http://drbind.limlab.ibms.sinica.edu.tw.
Journal of the American Chemical Society | 2009
Chia-Hsiang Lo; Ying-Hsuan Chang; Jon D. Wright; Shih-Hsun Chen; Daphne Kan; Carmay Lim; Po-Huang Liang
We present here how two amino acid residues in the first helix distal from the main dimer interface modulate the dimerization and activity of a geranylgeranyl diphosphate synthase (GGPPs). The enzyme catalyzes condensation of farnesyl diphosphate and isopentenyl diphosphate to generate a C(20) product as a precursor for chlorophylls, carotenoids, and geranylgeranylated proteins. The 3D structure of GGPPs from Saccharomyces cerevisiae reveals an unique positioning of the N-terminal helix A, which protrudes into the other subunit and stabilizes dimerization, although it is far from the main dimer interface. Through a series of mutants that were characterized by analytic ultracentrifugation (AUC), the replacement of L8 and I9 at this helix with Gly was found sufficient to disrupt the dimer into a monomer, leading to at least 10(3)-fold reduction in activity. Molecular dynamics simulations and free energy decomposition analyses revealed the possible effects of the mutations on the protein structures and several critical interactions for maintaining dimerization. Further site-directed mutagenesis and AUC studies elucidated the molecular mechanism for modulating dimerization and activity by long-range interactions.
The FASEB Journal | 2017
Jon D. Wright; Sung Wan An; Jian Xie; Joonho Yoon; Nicole Nischan; Jennifer J. Kohler; Noelynn Oliver; Carmay Lim; Chou Long Huang
Soluble Klotho (sKlotho) is the shed ectodomain of antiaging membrane Klotho that contains 2 extracellular domains KL1 and KL2, each of which shares sequence homology to glycosyl hydrolases. sKlotho elicits pleiotropic cellular responses with a poorly understood mechanism of action. Notably, in injury settings, sKlotho confers cardiac and renal protection by down‐regulating calcium‐permeable transient receptor potential canonical type isoform 6 (TRPC6) channels in cardiomyocytes and glomerular podocytes. Inhibition of PI3K‐dependent exocytosis of TRPC6 is thought to be the underlying mechanism, and recent studies showed that sKlotho interacts with α2–3‐sialyllactose‐containing gangliosides enriched in lipid rafts to inhibit raft‐dependent PI3K signaling. However, the structural basis for binding and recognition of α2–3‐sialyllactose by sKlotho is unknown. Using homology modeling followed by docking, we identified key protein residues in the KL1 domain that are likely involved in binding sialyllactose. Functional experiments based on the ability of Klotho to down‐regulate TRPC6 channel activity confirm the importance of these residues. Furthermore, KL1 domain binds α2–3‐sialyllactose, down‐regulates TRPC6 channels, and exerts protection against stress‐induced cardiac hypertrophy in mice. Our results support the notion that sialogangliosides and lipid rafts are membrane receptors for sKlotho and that the KL1 domain is sufficient for the tested biologic activities. These findings can help guide the design of a simpler Klotho mimetic.—Wright, J. D., An, S.‐W., Xie, J., Yoon, J., Nischan, N., Kohler, J. J., Oliver, N., Lim, C., Huang, C.‐L. Modeled structural basis for the recognition of α2–3‐sialyllactose by soluble Klotho. FASEB J. 31, 3574–3586 (2017). www.fasebj.org
Journal of Chemical Theory and Computation | 2013
Jon D. Wright; Karen Sargsyan; Xiongwu Wu; Bernard R. Brooks; Carmay Lim
In this work, we have (i) evaluated the ability of the EMAP method implemented in the CHARMM program to generate the correct conformation of Ab/Ag complex structures and (ii) developed a support vector machine (SVM) classifier to detect native conformations among the thousands of refined Ab/Ag configurations using the individual components of the binding free energy based on a thermodynamic cycle as input features in training the SVM. Tests on 24 Ab/Ag complexes from the protein-protein docking benchmark version 3.0 showed that based on CAPRI evaluation criteria, EMAP could generate medium-quality native conformations in each case. Furthermore, the SVM classifier could rank medium/high-quality native conformations mostly in the top six among the thousands of refined Ab/Ag configurations. Thus, Ab-Ag docking can be performed using different levels of protein representations, from grid-based (EMAP) to polar hydrogen (united-atom) to all-atom representation within the same program. The scripts used and the trained SVM are available at the www.charmm.org forum script repository.
Nucleic Acids Research | 2002
Jon D. Wright; Sergey Yu Noskov; Carmay Lim