Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon G. Mabley is active.

Publication


Featured researches published by Jon G. Mabley.


Nature Medicine | 2001

Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation

Francisco Garcia Soriano; László Virág; Prakash Jagtap; Éva Szabó; Jon G. Mabley; Lucas Liaudet; Anita Marton; Dale G. Hoyt; Kanneganti Murthy; Andrew L. Salzman; Garry J. Southan; Csaba Szabó

Diabetic patients frequently suffer from retinopathy, nephropathy, neuropathy and accelerated atherosclerosis. The loss of endothelial function precedes these vascular alterations. Here we report that activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of endothelial dysfunction in diabetes. Destruction of islet cells with streptozotocin in mice induced hyperglycemia, intravascular oxidant production, DNA strand breakage, PARP activation and a selective loss of endothelium-dependent vasodilation. Treatment with a novel potent PARP inhibitor, starting after the time of islet destruction, maintained normal vascular responsiveness, despite the persistence of severe hyperglycemia. Endothelial cells incubated in high glucose exhibited production of reactive nitrogen and oxygen species, consequent single-strand DNA breakage, PARP activation and associated metabolic and functional impairment. Basal and high-glucose-induced nuclear factor-κB activation were suppressed in the PARP-deficient cells. Our results indicate that PARP may be a novel drug target for the therapy of diabetic endothelial dysfunction.


The FASEB Journal | 2000

Adenosine inhibits IL-12 and TNF-α production via adenosine A2a receptor-dependent and independent mechanisms

György Haskó; David G. Kuhel; Jiang-Fan Chen; Michael A. Schwarzschild; Edwin A. Deitch; Jon G. Mabley; Anita Marton; Csaba Szabó

Interleukin 12 (IL‐12) is a crucial cytokine in the regulation of T helper 1 vs. T helper 2 immune responses. In the present study, we investigated the effect of the endogenous purine nucleoside adenosine on the production of IL‐12. In mouse macrophages, adenosine suppressed IL‐12 production. Although the order of potency of adenosine receptor agonists suggested the involvement of A2a receptors, data obtained with A2a receptor‐deficient mice showed that the adenosine suppression of IL‐12 and even TNF‐α production is only partly mediated by A2a receptor ligation. Studies with adenosine receptor antagonists or the adenosine uptake blocker dipyridamole showed that adenosine released endogenously also decreases IL‐12. Although adenosine increases IL‐10 production, the inhibition of IL‐12 production is independent of the increased IL‐10. The mechanism of action of adenosine was not associated with alterations of the activation of the p38 and p42/p44 mitogen‐activated protein kinases or the phosphorylation of the c‐Jun terminal kinase. Adenosine failed to affect steady‐state levels of either IL‐12 p35 or p40 mRNA, but augmented IL‐10 mRNA levels. In summary, adenosine inhibits IL‐12 production via various adenosine receptors. These results support the notion that adenosinebased therapies might be useful in certain autoimmune and/or inflammatory diseases.—Haskó, G., Kuhel, D. G., Chen, J.‐F., Schwarzschild, M. A., Deitch, E. A., Mabley, J. G., Marton, A., Szabó, C. Adenosine inhibits IL‐12 and TNF‐a production via adenosine A2a receptor‐dependent and independent mechanisms. FASEB J. 14, 2065–2074 (2000)


Current Medicinal Chemistry | 2005

Role of Nitrosative Stress and Peroxynitrite in the Pathogenesis of Diabetic Complications. Emerging New Therapeutical Strategies

Pál Pacher; Irina G. Obrosova; Jon G. Mabley; Csaba Szabó

Macro- and microvascular disease are the most common causes of morbidity and mortality in patients with diabetes mellitus. Diabetic cardiovascular dysfunction represents a problem of great clinical importance underlying the development of various severe complications including retinopathy, nephropathy, neuropathy and increase the risk of stroke, hypertension and myocardial infarction. Hyperglycemic episodes, which complicate even well-controlled cases of diabetes, are closely associated with increased oxidative and nitrosative stress, which can trigger the development of diabetic complications. Hyperglycemia stimulates the production of advanced glycosylated end products, activates protein kinase C, and enhances the polyol pathway leading to increased superoxide anion formation. Superoxide anion interacts with nitric oxide, forming the potent cytotoxin peroxynitrite, which attacks various biomolecules in the vascular endothelium, vascular smooth muscle and myocardium, leading to cardiovascular dysfunction. The pathogenetic role of nitrosative stress and peroxynitrite, and downstream mechanisms including poly(ADP-ribose) polymerase (PARP) activation, is not limited to the diabetes-induced cardiovascular dysfunction, but also contributes to the development and progression of diabetic nephropathy, retinopathy and neuropathy. Accordingly, neutralization of peroxynitrite or pharmacological inhibition of PARP is a promising new approach in the therapy and prevention of diabetic complications. This review focuses on the role of nitrosative stress and downstream mechanisms including activation of PARP in diabetic complications and on novel emerging therapeutical strategies offered by neutralization of peroxynitrite and inhibition of PARP.


Circulation | 2003

Potent Metalloporphyrin Peroxynitrite Decomposition Catalyst Protects Against the Development of Doxorubicin-Induced Cardiac Dysfunction

Pál Pacher; Lucas Liaudet; Péter Bai; Jon G. Mabley; Pawel M. Kaminski; László Virág; Amitabha Deb; Éva Szabó; Zoltan Ungvari; Michael S. Wolin; John T. Groves; Csaba Szabó

Background—Increased oxidative stress and dysregulation of nitric oxide have been implicated in the cardiotoxicity of doxorubicin (DOX), a commonly used antitumor agent. Peroxynitrite is a reactive oxidant produced from nitric oxide and superoxide in various forms of cardiac injury. Using a novel metalloporphyrinic peroxynitrite decomposition catalyst, FP15, and nitric oxide synthase inhibitors or knockout mice, we now delineate the pathogenetic role of peroxynitrite in rodent models of DOX-induced cardiac dysfunction. Methods and Results—Mice received a single injection of DOX (25 mg/kg IP). Five days after DOX administration, left ventricular performance was significantly depressed, and high mortality was noted. Treatment with FP15 and an inducible nitric oxide synthase inhibitor, aminoguanidine, reduced DOX-induced mortality and improved cardiac function. Genetic deletion of the inducible nitric oxide synthase gene was also accompanied by better preservation of cardiac performance. In contrast, inhibition of the endothelial isoform of nitric oxide synthase with N-nitro-l-arginine methyl ester increased DOX-induced mortality. FP15 reduced the DOX-induced increase in serum LDH and creatine kinase activities. Furthermore, FP15 prevented the DOX-induced increase in lipid peroxidation, nitrotyrosine formation, and metalloproteinase activation in the heart but not NAD(P)H-driven superoxide generation. Peroxynitrite neutralization did not interfere with the antitumor effect of DOX. FP15 also decreased ischemic injury in rats and improved cardiac function and survival of mice in a chronic model of DOX-induced cardiotoxicity. Conclusions—Thus, peroxynitrite plays a key role in the pathogenesis of DOX-induced cardiac failure. Targeting peroxynitrite formation may represent a new cardioprotective strategy after DOX exposure or in other conditions associated with peroxynitrite formation, including myocardial ischemia/reperfusion injury.


Journal of Immunology | 2000

Inosine Inhibits Inflammatory Cytokine Production by a Posttranscriptional Mechanism and Protects Against Endotoxin-Induced Shock

György Haskó; David G. Kuhel; Zoltán H. Németh; Jon G. Mabley; Robert Stachlewitz; László Virág; Zsolt Lohinai; Garry J. Southan; Andrew L. Salzman; Csaba Szabó

Extracellular purines, including adenosine and ATP, are potent endogenous immunomodulatory molecules. Inosine, a degradation product of these purines, can reach high concentrations in the extracellular space under conditions associated with cellular metabolic stress such as inflammation or ischemia. In the present study, we investigated whether extracellular inosine can affect inflammatory/immune processes. In immunostimulated macrophages and spleen cells, inosine potently inhibited the production of the proinflammatory cytokines TNF-α, IL-1, IL-12, macrophage-inflammatory protein-1α, and IFN-γ, but failed to alter the production of the anti-inflammatory cytokine IL-10. The effect of inosine did not require cellular uptake by nucleoside transporters and was partially reversed by blockade of adenosine A1 and A2 receptors. Inosine inhibited cytokine production by a posttranscriptional mechanism. The activity of inosine was independent of activation of the p38 and p42/p44 mitogen-activated protein kinases, the phosphorylation of the c-Jun terminal kinase, the degradation of inhibitory factor κB, and elevation of intracellular cAMP. Inosine suppressed proinflammatory cytokine production and mortality in a mouse endotoxemic model. Taken together, inosine has multiple anti-inflammatory effects. These findings, coupled with the fact that inosine has very low toxicity, suggest that this agent may be useful in the treatment of inflammatory/ischemic diseases.


Critical Care Medicine | 2002

Novel phenanthridinone inhibitors of poly(adenosine 5'-diphosphate-ribose) synthetase: Potent cytoprotective and antishock agents

Prakash Jagtap; Francisco Garcia Soriano; László Virág; Lucas Liaudet; Jon G. Mabley; Éva Szabó; György Haskó; Anita Marton; Clara Batista Lorigados; Ferenc Gallyas; Balazs Sumegi; Dale G. Hoyt; Erkan Baloglu; John VanDuzer; Andrew L. Salzman; Garry J. Southan; Csaba Szabó

ObjectiveTo synthesize novel inhibitors of the nuclear enzyme poly(adenosine 5′-diphosphate [ADP]-ribose) synthetase (PARS), also known as poly(ADP-ribose) polymerase (PARP), and to test them in in vitro models of oxidant-induced cytotoxicity and in endotoxin and splanchnic occlusion-reperfusion-induced shock. DesignRandomized, prospective laboratory study. SettingResearch laboratory. SubjectsMurine macrophages, thymocytes, and endothelial cells; Balb/c mice and Wistar rats. InterventionsMacrophages and endothelial cells were treated with peroxynitrite and bleomycin to induce PARS activation, and thymocytes were treated with peroxynitrite to induce cell necrosis. Novel PARS inhibitors were synthesized and used to reduce PARS activation and to reverse cytotoxicity. Balb/c mice were subjected to splanchnic occlusion and reperfusion and were pretreated with various doses (1–10 mg/kg intraperitoneally) of PJ34, a selected, potent, water-soluble PARS inhibitor. The passage of fluorescein isothiocyanate-conjugated dextran (4 kDa) was analyzed in everted gut ileal sacs incubated ex vivo as an index of gut permeability. Wistar rats were subjected to Escherichia coli bacterial lipopolysaccharide (40 mg/kg intraperitoneally). PJ34 was also used at 10 mg/kg intraperitoneally, 1 hr before lipopolysaccharide or at 25 mg/kg intraperitoneally 1 hr after lipopolysaccharide treatment. Serum concentrations of indicators or multiple organ injury, concentrations of various proinflammatory mediators, and tissue concentrations of myeloperoxidase and malondialdehyde were measured. In addition, survival rates and vascular contractile and relaxant responses were recorded. Measurements and Main ResultsAppropriate modifications of the phenanthridinone core structure yielded significant increases in the potency of the compounds, both as PARS inhibitors and as cytoprotective agents. The compound N-(6-oxo-5,6-dihydro-phenanthridin-2-yl) -N,N-dimethylacetamide (designated as PJ34) was one of the potent PARS inhibitors of the series, and it dose-dependently protected against thymocyte necrosis, with a half-maximal restoration of cell viability of 35 nM and complete protection at 200 nM. PARS activation also was visualized by immunohistochemistry and was dose-dependently suppressed by PJ34. The effect of PJ34 was dose-dependently reversed by excess nicotinamide adenine dinucleotide (oxidized). The PARS inhibitors dose-dependently suppressed proinflammatory cytokine and chemokine production and restored viability in immunostimulated macrophages. PJ34 was selected for the subsequent in vivo studies. PJ34 significantly protected against splanchnic reperfusion-induced intestinal hyperpermeability in the mouse. PJ34 reduced peak plasma concentrations of tumor necrosis factor-&agr;, interleukin-1&bgr;, and nitrite/nitrate in the plasma of lipopolysaccharide-treated rats. PJ34 ameliorated the lipopolysaccharide-induced increases in indexes of liver and kidney failure and concentrations of myeloperoxidase and malondialdehyde in the lung and gut. Lipopolysaccharide elicited vascular dysfunction, which was normalized by PJ34. Lipopolysaccharide-induced mortality was reduced by PJ34 (both pre- and posttreatment). ConclusionsThe novel series of phenanthridinone PARS inhibitors have potent cytoprotective effects in vitro and significant protective effects in shock and reperfusion injury in rodent models in vivo.


Shock | 2002

Resistance to acute septic peritonitis in poly(ADP-ribose) polymerase-1-deficient mice

Francisco Garcia Soriano; Lucas Liaudet; Éva Szabó; László Virág; Jon G. Mabley; Pál Pacher; Csaba Szabó

Sepsis is associated with a widespread production of proinflammatory cytokines and various oxidant species. Activation of the enzyme poly(ADP-ribose) polymerase (PARP) has been shown to contribute to cell necrosis and organ failure in various diseases associated with inflammation and reperfusion injury. The aim of the current study was to elucidate the role of PARP activation in the multiple organ dysfunction complicating sepsis in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Mice genetically deficient in PARP (PARP−/−) and their wild-type littermates (PARP+/+) were subjected to CLP. After 12 and 24 h, the proinflammatory cytokines TNF-&agr; and IL-6, as well as the anti-inflammatory cytokine IL-10, and nitrite/nitrate were measured in plasma samples. Organs were harvested for the measurement of myeloperoxidase (MPO) and malondialdehyde (MDA) levels, and immunohistochemical staining for nitrotyrosine and poly(ADP ribose) was performed in gut sections. PARP−/− mice, and their wild-type littermate showed a similar time-dependent increase in plasma nitrite/nitrate and in gut and lung MDA content, as well as the presence of nitrotyrosine in the gut. In contrast to wild-type mice showing a PARP activation in the gut, PARP−/− mice had no staining for poly(ADP ribose). PARP−/− mice had significantly lower plasma levels of TNF-&agr;, IL-6, and IL-10, and they exhibited a reduced degree of organ inflammation, indicated by decreased MPO activity in the gut and lung. These effects were associated with a significant improvement in the survival of CLP in PARP−/− mice. Thus, PARP activation has an important role in systemic inflammation and organ damage in the present model of polymicrobial septic shock.


The FASEB Journal | 2004

Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst

Irina G. Obrosova; Jon G. Mabley; Zsuzsanna Zsengellér; Tamara Charniauskaya; Omorodola I. Abatan; John T. Groves; Csaba Szabó

Nitrosative stress, that is, enhanced peroxynitrite formation, has been documented in both experimental and clinical diabetic neuropathy (DN), but its pathogenetic role remains unexplored. This study evaluated the role for nitrosative stress in two animal models of type 1 diabetes: streptozotocin‐diabetic mice and diabetic NOD mice. Control (C) and streptozotocin‐diabetic (D) mice were treated with and without the potent peroxynitrite decomposition catalyst FP15 (5 mg kg−1 d−1) for 1 wk after 8 wk without treatment. Sciatic nerve nitrotyrosine (a marker of peroxynitrite‐induced injury) and poly(ADP‐ribose) immunoreactivities were present in D and absent in C and D+FP15. FP15 treatment corrected sciatic motor and hind‐limb digital sensory nerve conduction deficits and sciatic nerve energy state in D, without affecting those variables in C. Nerve glucose and sorbitol pathway intermediate concentrations were similarly elevated in D and D+FP15 vs C. In diabetic NOD mice, a 7‐day treatment with either 1 or 3 mg kg−1 d−1 FP15 reversed increased tail‐flick latency (a sign of reduced pain sensitivity); the effect of the higher dose was significant as early as 3 days after beginning of the treatment. In conclusion, nitrosative stress plays a major role in DN in, at least, type 1 diabetes. This provides the rationale for development of agents counteracting peroxynitrite formation and promoting peroxynitrite decomposition, and their evaluation in DN.


Inflammation Research | 2001

Anti-inflammatory effects of a novel, potent inhibitor of poly (ADP-ribose) polymerase

Jon G. Mabley; Prakash Jagtap; Mauro Perretti; Stephen J. Getting; Andrew L. Salzman; László Virág; Éva Szabó; Francisco Garcia Soriano; Lucas Liaudet; Ge Abdelkarim; György Haskó; Anita Marton; G. J. Southan; Csaba Szabó

Abstract.Objective and design: Oxygen- and nitrogen-derived free radicals and oxidants play an important role in the pathogenesis of various forms of inflammation. Recent work emphasizes the importance of oxidant-induced DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in the pathogenesis of various inflammatory diseases. We have recently demonstrated the efficacy of PJ34, a novel, potent phenanthridinone derivative PARP inhibitor, in rodent models of diabetic vascular dysfunction and stroke. Here we tested the efficacy of PARP inhibition in various models of local inflammation in rodents.¶Materials and methods: PJ34 (at doses of 0.03-30 mg/kg) was tested in rats and mice subjected to standard models of inflammation, with relevant parameters of inflammation measured using standard methods.¶Results: PJ34 treatment (s.c, i.p. and i.v.) dose-dependently suppressed neutrophil infiltration and nitric oxide (but not KC and IL-1β) production in peritonitis. In a model of systemic endotoxemia, PJ34 pretreatment significantly reduced plasma levels of TNF-α, IL-1β and nitrite/nitrate (breakdown products of nitric oxide) production. PJ34 treatment (oral gavage) induced a significant suppression of the inflammatory response in dextran sulfate colitis, multiple low dose streptozotocin diabetes and cyclophosphamide-accelerated autoimmune diabetes in the non-obese diabetic mice, and reduced the degree of mononuclear cell infiltration into the iris in an endotoxin-induced uveitis model. Delaying the start of PJ34 administration in the colitis model conferred significant protective effects, while in the arthritis model the post-treatment paradigm lacked protective effects.¶Conclusions: PJ34 provides significant, dose-dependent, anti-inflammatory effects in a variety of local inflammation models. Some of its actions are maintained in the post-treatment regimen and/or after discontinuation of treatment. We conclude that PARP inhibition offers a powerful means for reducing the severity of various forms of local inflammatory responses.


Shock | 2003

Flagellin from gram-negative bacteria is a potent mediator of acute pulmonary inflammation in sepsis.

Lucas Liaudet; Csaba Szabó; Oleg V. Evgenov; Kanneganti Murthy; Pál Pacher; László Virág; Jon G. Mabley; Anita Marton; Francisco Garcia Soriano; Mikhail Y. Kirov; Lars J. Bjertnaes; Andrew L. Salzman

Flagellin is a recently identified bacterial product that elicits immune response via toll-like receptor 5. Here, we demonstrate that flagellin is an extraordinarily potent proinflammatory stimulus in the lung during sepsis. In vitro, flagellin triggers the production of interleukin (IL)-8 by human lung epithelial (A549) cells, with 50% of the maximal response obtained at a concentration of 2 × 10−14 M. Flagellin also induces the expression of ICAM-1 in vitro. Intravenous administration of flagellin to mice elicited a severe acute lung inflammation that was significantly more pronounced than following lipopolysaccharide (LPS) administration. Flagellin induced a local release of proinflammatory cytokines, the accumulation of inflammatory cells, and the development of pulmonary hyperpermeability. These effects were associated with the nuclear translocation of the transcription NF-&kgr;B in the lung. Flagellin remained active in inducing pulmonary inflammation at doses as low as 10 ng/mouse. In the plasma of patients with sepsis, flagellin levels amounted to 7.1 ± 0.1 ng/mL. Plasma flagellin levels showed a significant positive correlation with the lung injury score, with the alveolar-arterial oxygen difference as well as with the duration of the sepsis. Flagellin emerges as a potent trigger of acute respiratory complications in gram-negative bacterial sepsis.

Collaboration


Dive into the Jon G. Mabley's collaboration.

Top Co-Authors

Avatar

Csaba Szabó

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Pál Pacher

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew L. Salzman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge