Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jon I. Mujika is active.

Publication


Featured researches published by Jon I. Mujika.


Journal of Inorganic Biochemistry | 2012

Pro-oxidant activity of aluminum: Promoting the Fenton reaction by reducing Fe(III) to Fe(II)

Fernando Ruipérez; Jon I. Mujika; Jesus M. Ugalde; Christopher Exley; Xabier Lopez

The possibility for an Al-superoxide complex to reduce Fe(III) to Fe(II), promoting oxidative damage through the Fenton reaction, is investigated using highly accurate ab initio methods and density functional theory in conjunction with solvation continuum methods to simulate bulk solvent effects. It is found that the redox reaction between Al-superoxide and Fe(III) to produce Fe(II) is exothermic. Moreover, the loss of an electron from the superoxide radical ion in the Al-superoxide complex leads to a spontaneous dissociation of molecular oxygen from aluminum, recovering therefore an Al(3+) hexahydrated complex. As demonstrated in previous studies, this complex is again prone to stabilize another superoxide molecule, suggesting a catalytic cycle that augments the concentration of Fe(II) in the presence of Al(III). Similar results are found for Al(OH)(2+) and Al(OH)(2)(+) hydrolytic species. Our work reinforces the idea that the presence of aluminum in biological systems could lead to an important pro-oxidant activity through a superoxide formation mechanism.


Journal of the Royal Society Interface | 2008

Analysis of polarization in QM/MM modelling of biologically relevant hydrogen bonds

K. Senthilkumar; Jon I. Mujika; Kara E. Ranaghan; Frederick R. Manby; Adrian J. Mulholland; Jeremy N. Harvey

Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly important for the study of chemical reactions and systems in condensed phases. Here, we have tested the accuracy of a density functional theory-based QM/MM implementation (B3LYP/6-311+G(d,p)/CHARMM27) on a set of biologically relevant interactions by comparison with full QM calculations. Intermolecular charge transfer due to hydrogen bond formation is studied to assess the severity of spurious polarization of QM atoms by MM point charges close to the QM/MM boundary. The changes in total electron density and natural bond orbital atomic charges due to hydrogen bond formation in selected complexes obtained at the QM/MM level are compared with full QM results. It is found that charge leakage from the QM atoms to MM atomic point charges close to the QM/MM boundary is not a serious problem, at least with limited basis sets. The results are encouraging in showing that important properties of key biomolecular interactions can be treated well at the QM/MM level employing good-quality levels of QM theory.


Journal of Physical Chemistry A | 2011

Pro-oxidant Activity of Aluminum: Stabilization of the Aluminum Superoxide Radical Ion

Jon I. Mujika; Fernando Ruipérez; Ivan Infante; Jesus M. Ugalde; Christopher Exley; Xabier Lopez

The pro-oxidant activity of aluminum, a nonredox metal, through superoxide formation is studied by theoretical methods, determining the ESR g-tensor values of O2(•–) with a variety of metals and the reaction energies for Al3+ superoxide affinity in solution. First, the intrinsic ability of aluminum to induce a splitting of the πg levels is compared to that of other significant biological metals, such as Na+, K+, Mg2+, and Ca2+. Additional properties such as bond lengths, ionization potentials, and electron affinities are also determined, and the coherency with the trends observed from ESR g-tensor values is analyzed. As it corresponds to the high charge and its small size, there is a strong interaction between Al3+ and the superoxide. We predict that this strong inherent interaction remains when aluminum is microsolvated. Finally, we analyze the possibility of Al3+ superoxide formation in solution, leading to the conclusion that substitution of the first coordination shell water molecules is plausible, but not of hydroxides. This points to the possibility of Al3+ superoxide formation in solution, which would be pH-dependent. Taking into account the earlier established linear relationship between metal–superoxide interactions and promoting effects in electron-transfer reactions, our work reinforces the idea that the presence of aluminum in biological systems could lead to an important pro-oxidant activity through a superoxide formation mechanism.


Biochemistry | 2012

Molecular dynamics simulations of iron- and aluminum-loaded serum transferrin: protonation of Tyr188 is necessary to prompt metal release.

Jon I. Mujika; Bruno Escribano; Elena Akhmatskaya; Jesus M. Ugalde; Xabier Lopez

Serum transferrin (sTf) carries iron in blood serum and delivers it into cells by receptor-mediated endocytosis. The protein can also bind other metals, including aluminum. The crystal structures of the metal-free and metal-loaded protein indicate that the metal release process involves an opening of the protein. In this process, Lys206 and Lys296 lying in the proximity of each other form the dilysine pair or, so-called, dilysine trigger. It was suggested that the conformational change takes place due to variations of the protonation state of the dilysine trigger at the acidic endosomal pH. In 2003, Rinaldo and Field (Biophys. J. 85, 3485-3501) proposed that the dilysine trigger alone can not explain the opening and that the protonation of Tyr188 is required to prompt the conformational change. However, no evidence was supplied to support this hypothesis. Here, we present several 60 ns molecular dynamics simulations considering various protonation states to investigate the complexes formed by sTf with Fe(III) and Al(III). The calculations demonstrate that only in those systems where Tyr188 has been protonated does the protein undergo the conformational change and that the dilysine trigger alone does not lead to the opening. The simulations also indicate that the metal release process is a stepwise mechanism, where the hinge-bending motion is followed by the hinge-twisting step. Therefore, the study demonstrates for the first time that the protonation of Tyr188 is required for the release of metal from the metal loaded sTf and provides valuable information about the whole process.


Journal of Inorganic Biochemistry | 2011

A QM/MM study of the complexes formed by aluminum and iron with serum transferrin at neutral and acidic pH

Jon I. Mujika; Xabier Lopez; E. Rezabal; R. Castillo; Sergio Martí; Vicent Moliner; Jesus M. Ugalde

Serum transferrin (sTf) transports iron in serum and internalizes in cells via receptor mediated endocytosis. Additionally, sTf has been identified as the predominant aluminum carrier in serum. Some questions remain unclear about the exact mechanism for the metal release or whether the aluminum and iron show the same binding mode during the entire process. In the present work, simulation techniques at quantum and atomic levels have been employed in order to gain access into a molecular level understanding of the metal-bound sTf complex, and to describe the binding of Al(III) and Fe(III) ions to sTf. First, hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were carried out in order to analyze the dynamics of the aluminum-loaded complex, taking into account the different pH conditions in blood and into the cell. Moreover, the complexes formed by transferrin with Al(III) and Fe(III) were optimized with high level density functional theory (DFT)/MM methods. All these results indicate that the interaction mode of Al(III) and Fe(III) with sTf change upon different pH conditions, and that the coordination of Al(III) and Fe(III) is not equivalent during the metal intake, transport and release processes. Our results emphasize the importance of the pH on the metal binding and release mechanism and suggest that Al(III) can follow the iron pathway to get access into cells, although once there, it may show a different binding mode, leading to a different mechanism for its release.


Chemistry: A European Journal | 2013

Computational study on the attack of ·OH radicals on aromatic amino acids.

Jon I. Mujika; Jon Uranga; Jon M. Matxain

The attack of hydroxyl radicals on aromatic amino acid side chains, namely phenylalanine, tyrosine, and tryptophan, have been studied by using density functional theory. Two reaction mechanisms were considered: 1) Addition reactions onto the aromatic ring atoms and 2) hydrogen abstraction from all of the possible atoms on the side chains. The thermodynamics and kinetics of the attack of a maximum of two hydroxyl radicals were studied, considering the effect of different protein environments at two different dielectric values (4 and 80). The obtained theoretical results explain how the radical attacks take place and provide new insight into the reasons for the experimentally observed preferential mechanism. These results indicate that, even though the attack of the first (·)OH radical on an aliphatic C atom is energetically favored, the larger delocalization and concomitant stabilization that are obtained by attack on the aromatic side chain prevail. Thus, the obtained theoretical results are in agreement with the experimental evidence that the aromatic side chain is the main target for radical attack and show that the first (·)OH radical is added onto the aromatic ring, whereas a second radical abstracts a hydrogen atom from the same position to obtain the oxidized product. Moreover, the results indicate that the reaction can be favored in the buried region of the protein.


Computational and structural biotechnology journal | 2014

Aluminium in Biological Environments: A Computational Approach

Jon I. Mujika; Elixabete Rezabal; Jose M. Mercero; Fernando Ruipérez; Dominique Costa; Jesus M. Ugalde; Xabier Lopez

The increased availability of aluminium in biological environments, due to human intervention in the last century, raises concerns on the effects that this so far “excluded from biology” metal might have on living organisms. Consequently, the bioinorganic chemistry of aluminium has emerged as a very active field of research. This review will focus on our contributions to this field, based on computational studies that can yield an understanding of the aluminum biochemistry at a molecular level. Aluminium can interact and be stabilized in biological environments by complexing with both low molecular mass chelants and high molecular mass peptides. The speciation of the metal is, nonetheless, dictated by the hydrolytic species dominant in each case and which vary according to the pH condition of the medium. In blood, citrate and serum transferrin are identified as the main low molecular mass and high molecular mass molecules interacting with aluminium. The complexation of aluminium to citrate and the subsequent changes exerted on the deprotonation pathways of its tritable groups will be discussed along with the mechanisms for the intake and release of aluminium in serum transferrin at two pH conditions, physiological neutral and endosomatic acidic. Aluminium can substitute other metals, in particular magnesium, in protein buried sites and trigger conformational disorder and alteration of the protonation states of the proteins sidechains. A detailed account of the interaction of aluminium with proteic sidechains will be given. Finally, it will be described how alumnium can exert oxidative stress by stabilizing superoxide radicals either as mononuclear aluminium or clustered in boehmite. The possibility of promotion of Fenton reaction, and production of hydroxyl radicals will also be discussed.


Journal of Physical Chemistry B | 2009

Modeling Protein Splicing : Reaction Pathway for C-Terminal Splice and Intein Scission

Jon I. Mujika; Xabier Lopez; Adrian J. Mulholland

Protein splicing is a post-translational process where a biologically inactive protein is activated after the release of a so-called intein domain. In spite of the importance of this type of process, the specific molecular mechanism for the catalysis is still uncertain. In this work, we present a computational study of one of the key steps in protein splicing: the release of the intein due to the cyclization of an asparagine, the last amino acid of the intein. Density functional theory (DFT) calculations using the B3LYP functional in conjunction with the polarizable continuum model (PCM) were used to study the main stationary points along various possible reaction pathways. The results are compared with other DFT functionals and the MP2 ab initio method. In the first part of this work, the Asn-Thr dipeptide is analyzed with the aim of determining the specific requirements for the activation of the intrinsically slow Asn cyclization. The results show that the nucleophilic activation of the Asn side chain by removing one of its proton decreases the free energy barrier by approximately 20 kcal/mol. A full pathway of the reaction was also characterized in a larger model, including two imidazole molecules and two water molecules. The proposed reaction mechanism consists of two main steps: Asn side chain activation by a proton transfer to one of the imidazole groups, and cleavage of the peptide bond upon protonation of its nitrogen atom by the other imidazole. The overall free energy barrier in solution was determined to be 29.3 kcal/mol, in reasonable agreement with the apparent experimental barrier in the enzyme. The proposed mechanism suggests that the penultimate histidine stabilizes the tetrahedral intermediate and protonates the nitrogen of the scissile peptide bond, while a second histidine (located 10 amino acids upstream) activates the Asn side chain by deprotonating it.


Journal of Physical Chemistry B | 2015

·OH Oxidation Toward S- and OH-Containing Amino Acids.

Jon Uranga; Jon I. Mujika; Jon M. Matxain

The hydroxyl radical is the most reactive oxygen species, and it is able to attack macromolecules such as proteins. Such oxidation processes are the cause of a number of diseases. Several oxidized products have been experimentally characterized, but the reaction pathways remain unclear. Herein, we present a theoretical study on the attack of hydroxyl radicals on hydroxyl- and sulfur-containing amino acid side chains. Several reaction mechanisms, such as hydrogen abstraction, electron transfer, or ·OH addition have been considered to investigate several reaction mechanisms. Two different dielectric values (4 and 80) have been used to model the effect of different protein environments. In addition, different alternative conformations of the amino acid backbone have been considered. Overall, the results indicate that the thermodynamics is the main factor driving the reaction pathway preference and, to a great extent, explains the formation of the experimental oxidized produts. Sulfur-containing amino acids would be oxidized more easily than OH-containing amino acids, which confirms the experimental evidence. This is determined by the stability of the sulfur radical intermediates. These results are not dramatically affected by either different dielectrics or backbone conformations.


RSC Advances | 2015

Ceramide increases free volume voids in DPPC membranes

Eneko Axpe; Aritz B. García-Arribas; Jon I. Mujika; David Merida; Alicia Alonso; Xabier Lopez; J.A. García; Jesus M. Ugalde; Félix M. Goñi; F. Plazaola

Positron annihilation lifetime spectroscopy (PALS) can measure changes in local free volume voids in lipid bilayers. PALS has been applied, together with differential scanning calorimetry (DSC) and molecular dynamics (MD) simulations, to study free volume voids in DPPC and DPPC : ceramide (85 : 15 mol : mol) model membranes in the 20–60 °C range. The free volume void average size clearly increases with the gel–fluid phase transition of the lipid, or lipid mixture. Ceramide increases void size at all temperatures, particularly in the range causing the gel–fluid transition of the mixture. A parallel study of PALS and calorimetric data indicates that, for the complex thermotropic transition of the DPPC–ceramide mixture, PALS is detecting the transition of the DPPC component, while calorimetry changes indicate mainly the melting of the ceramide-enriched domains. Molecular dynamics calculations provide a clear distinction between ceramide-rich and poor domains, and show that the voids are predominantly located near the membrane nodal plane. The ceramide-induced increase in void volume size occurs as well at temperatures when both phospholipid and ceramide are in the fluid state, indicating that the effect is not the result of phospholipid–ceramide domain coexistence. The above observations may be related to hitherto unexplained properties of ceramide, such as the increase in membrane permeability, and the induction of transmembrane (flip-flop) lipid motion.

Collaboration


Dive into the Jon I. Mujika's collaboration.

Top Co-Authors

Avatar

Xabier Lopez

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar

Jesus M. Ugalde

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar

Jon M. Matxain

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar

Elena Formoso

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose M. Mercero

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Jon Uranga

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Ruipérez

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Rafael Grande-Aztatzi

Donostia International Physics Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge